RS-tracker/scan/dft_detect.c

895 wiersze
24 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <complex.h>
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef short i16_t;
typedef int i32_t;
static int option_verbose = 0, // ausfuehrliche Anzeige
option_inv = 0, // invertiert Signal
option_dc = 0,
option_silent = 0,
wavloaded = 0;
static int wav_channel = 0; // audio channel: left
//int dfm_bps = 2500;
static char dfm_header[] = "10011010100110010101101001010101"; // DFM-09
// "01100101011001101010010110101010"; // DFM-06
//int vai_bps = 4800;
static char rs41_header[] = "00001000011011010101001110001000"
"01000100011010010100100000011111";
static char rs92_header[] = //"10100110011001101001"
//"10100110011001101001"
"10100110011001101001"
"10100110011001101001"
"1010011001100110100110101010100110101001";
//int lms_bps = 4800;
static char lms6_header[] = "0101011000001000""0001110010010111"
"0001101010100111""0011110100111110";
//int m10_bps = 9600;
static char m10_header[] = "10011001100110010100110010011001";
// frame byte[0..1]: byte[0]=framelen-1, byte[1]=type(8F=M2K2,9F=M10,AF=M10+)
// M2K2 : 64 8F : 0110010010001111
// M10 : 64 9F : 0110010010011111 (framelen 0x64+1)
// M10-aux: 76 9F : 0111011010011111 (framelen 0x76+1)
// M10+ : 64 AF : 0110010010101111 (w/ gtop-GPS)
// imet_9600 / 1200 Hz;
static char imet_preamble[] = "11110000111100001111000011110000"
"11110000111100001111000011110000"
"11110000111100001111000011110000"
"11110000111100001111000011110000"; // 1200 Hz preamble
//int imet1ab_bps = 9600; // 1200 bits/sec
static char imet1ab_header[] = "11110000111100001111000011110000"
// "11110000""10101100110010101100101010101100"
"11110000""10101100110010101100101010101100";
// 11110000:1 , 001100110:0 // 11/4=2.1818..
static char imet1rs_header[] =
"0000""1111""0000""1111""0000""1111" // preamble
"0000""1111";
// imet1rs/imet4 1200Hz preamble , lead_out , 8N1 byte: lead-in 8bits lead-out , ...
// 1:1200Hz/0:2200Hz tones, bit-duration 1/1200 sec, phase ...
// bits: 1111111111111111111 10 10000000 10 ..;
// C34/C50: 2400 baud, 1:2900Hz/0:4800Hz
static char c34_preheader[] =
"01010101010101010101010101010101"; // 2900 Hz tone
// dft, dB-max(1000Hz..5000Hz) = 2900Hz ?
typedef struct {
int bps; // header: here bps means baudrate ...
int hLen;
int N;
char *header;
float BT;
float spb;
float thres;
float complex *Fm;
char *type;
ui8_t tn; // signed?
} rsheader_t;
#define Nrs 9
#define idxAB 7
#define idxRS 8
static rsheader_t rs_hdr[Nrs] = {
{ 2500, 0, 0, dfm_header, 1.0, 0.0, 0.65, NULL, "DFM9", 2}, // DFM6: -2 (unsigned)
{ 4800, 0, 0, rs41_header, 0.5, 0.0, 0.70, NULL, "RS41", 3},
{ 4800, 0, 0, rs92_header, 0.5, 0.0, 0.70, NULL, "RS92", 4},
{ 4800, 0, 0, lms6_header, 1.0, 0.0, 0.70, NULL, "LMS6", 8},
{ 9600, 0, 0, m10_header, 1.0, 0.0, 0.76, NULL, "M10", 5},
{ 5800, 0, 0, c34_preheader, 1.5, 0.0, 0.80, NULL, "C34C50", 9}, // C34/C50 2900 Hz tone
{ 9600, 0, 0, imet_preamble, 0.5, 0.0, 0.80, NULL, "IMET", 6}, // IMET1AB=7, IMET1RS=8
{ 9600, 0, 0, imet1ab_header, 1.0, 0.0, 0.80, NULL, "IMET1AB", 6},
{ 9600, 0, 0, imet1rs_header, 0.5, 0.0, 0.80, NULL, "IMET1RS", 7} // IMET4
};
/*
// m10-false-positive:
// m10-preamble similar to rs41-preamble, parts of rs92/imet1ab; diffs:
// - iq: - modulation-index rs41 < rs92 < m10,
// - power level / frame < 1s, noise
// - fm: - frame duration <-> noise (variance/standard deviation)
// - pulse-shaping
// m10: 00110011 at 9600 bps
// rs41: 0 1 0 1 at 4800 bps
// - m10 top-carrier, fm-mean/average
// - m10-header ..110(1)0110011()011.. bit shuffle
// - m10 frame byte[1]=type(M2K2,M10,M10+)
*/
/*
// rs92
// imet1ab-false-positive
// ...
*/
static int sample_rate = 0, bits_sample = 0, channels = 0;
static int wav_ch = 0; // 0: links bzw. mono; 1: rechts
static unsigned int sample_in, sample_out, delay;
static int M; // N
static float *bufs = NULL;
static char *rawbits = NULL;
static int Nvar = 0; // < M
static double xsum = 0;
static float *xs = NULL;
/*
static double xsum=0, qsum=0;
static float *xs = NULL,
*qs = NULL;
*/
static float dc_ofs = 0.0;
static float dc = 0.0;
/* ------------------------------------------------------------------------------------ */
static int LOG2N, N_DFT;
static float complex *ew;
static float complex *X, *Z, *cx;
static float *xn;
static float *db;
static void dft_raw(float complex *Z) {
int s, l, l2, i, j, k;
float complex w1, w2, T;
j = 1;
for (i = 1; i < N_DFT; i++) {
if (i < j) {
T = Z[j-1];
Z[j-1] = Z[i-1];
Z[i-1] = T;
}
k = N_DFT/2;
while (k < j) {
j = j - k;
k = k/2;
}
j = j + k;
}
for (s = 0; s < LOG2N; s++) {
l2 = 1 << s;
l = l2 << 1;
w1 = (float complex)1.0;
w2 = ew[s]; // cexp(-I*M_PI/(float)l2)
for (j = 1; j <= l2; j++) {
for (i = j; i <= N_DFT; i += l) {
k = i + l2;
T = Z[k-1] * w1;
Z[k-1] = Z[i-1] - T;
Z[i-1] = Z[i-1] + T;
}
w1 = w1 * w2;
}
}
}
static void dft(float *x, float complex *Z) {
int i;
for (i = 0; i < N_DFT; i++) Z[i] = (float complex)x[i];
dft_raw(Z);
}
static void Nidft(float complex *Z, float complex *z) {
int i;
for (i = 0; i < N_DFT; i++) z[i] = conj(Z[i]);
dft_raw(z);
// idft():
// for (i = 0; i < N_DFT; i++) z[i] = conj(z[i])/(float)N_DFT; // hier: z reell
}
static float freq2bin(int f) {
return f * N_DFT / (float)sample_rate;
}
static float bin2freq(int k) {
return sample_rate * k / (float)N_DFT;
}
/* ------------------------------------------------------------------------------------ */
/*
static float get_bufvar(int ofs) {
float mu = xs[(sample_out+M + ofs) % M]/Nvar;
float var = qs[(sample_out+M + ofs) % M]/Nvar - mu*mu;
return var;
}
*/
static float get_bufmu(int ofs) {
float mu = xs[(sample_out+M + ofs) % M]/Nvar;
return mu;
}
static int getCorrDFT(int abs, int K, unsigned int pos, float *maxv, unsigned int *maxvpos, rsheader_t rshd) {
int i;
int mp = -1;
float mx = 0.0;
double xnorm = 1;
unsigned int mpos = 0;
dc = 0.0;
#ifdef ZEROPAD
if (rshd.N + K > N_DFT/2 - 2) return -1;
#else
if (rshd.N + K > N_DFT) return -1;
#endif
// if (sample_in < delay+rshd.N+K) return -2;
if (pos == 0) pos = sample_out;
for (i = 0; i < rshd.N+K; i++) xn[i] = bufs[(pos+M -(rshd.N+K-1) + i) % M];
while (i < N_DFT) xn[i++] = 0.0;
dft(xn, X);
dc = get_bufmu(pos-sample_out); //oder: dc = creal(X[0])/N_DFT;
for (i = 0; i < N_DFT; i++) Z[i] = X[i]*rshd.Fm[i];
Nidft(Z, cx);
if (abs) {
for (i = rshd.N; i < rshd.N+K; i++) {
if (fabs(creal(cx[i])) > fabs(mx)) { // imag(cx)=0
mx = creal(cx[i]);
mp = i;
}
}
}
else {
for (i = rshd.N; i < rshd.N+K; i++) {
if (creal(cx[i]) > mx) { // imag(cx)=0
mx = creal(cx[i]);
mp = i;
}
}
}
if (mp == rshd.N || mp == rshd.N+K-1) return -4; // Randwert
mpos = pos - ( rshd.N+K-1 - mp );
//xnorm = sqrt(qs[(mpos + 2*M) % M]);
xnorm = 0.0;
for (i = 0; i < rshd.N; i++) xnorm += bufs[(mpos-i + M) % M]*bufs[(mpos-i + M) % M];
xnorm = sqrt(xnorm);
mx /= xnorm*N_DFT;
*maxv = mx;
*maxvpos = mpos;
return mp;
}
/* ------------------------------------------------------------------------------------ */
static int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
static int read_wav_header(FILE *fp, int wav_channel) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if (wav_channel >= 0 && wav_channel < channels) wav_ch = wav_channel;
else wav_ch = 0;
fprintf(stderr, "channel-In : %d\n", wav_ch+1);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
return 0;
}
static int f32read_sample(FILE *fp, float *s) {
int i;
short b = 0;
for (i = 0; i < channels; i++) {
if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF;
if (i == wav_ch) { // i = 0: links bzw. mono
//if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128
//if (bits_sample == 16) sint = (short)b;
if (bits_sample == 8) { b -= 128; }
*s = b/128.0;
if (bits_sample == 16) { *s /= 256.0; }
}
}
return 0;
}
static int f32buf_sample(FILE *fp, int inv) {
float s = 0.0;
float xneu, xalt;
if (f32read_sample(fp, &s) == EOF) return EOF;
if (inv) s = -s;
bufs[sample_in % M] = s - dc_ofs;
xneu = bufs[(sample_in ) % M];
xalt = bufs[(sample_in+M - Nvar) % M];
xsum += xneu - xalt; // + xneu - xalt
xs[sample_in % M] = xsum;
/*
qsum += (xneu - xalt)*(xneu + xalt); // + xneu*xneu - xalt*xalt
qs[sample_in % M] = qsum;
*/
sample_out = sample_in - delay;
sample_in += 1;
return 0;
}
static int read_bufbit(int symlen, char *bits, unsigned int mvp, int reset, float spb) {
// symlen==2: manchester2 0->10,1->01->1: 2.bit
static unsigned int rcount;
static float rbitgrenze;
double sum = 0.0;
if (reset) {
rcount = 0;
rbitgrenze = 0;
}
rbitgrenze += spb;
do {
sum += bufs[(rcount + mvp + M) % M];
rcount++;
} while (rcount < rbitgrenze); // n < spb
if (symlen == 2) {
rbitgrenze += spb;
do {
sum -= bufs[(rcount + mvp + M) % M];
rcount++;
} while (rcount < rbitgrenze); // n < spb
}
if (symlen != 2) {
if (sum >= 0) *bits = '1';
else *bits = '0';
}
else {
if (sum >= 0) strncpy(bits, "10", 2);
else strncpy(bits, "01", 2);
}
return 0;
}
static int headcmp(int symlen, char *hdr, int len, unsigned int mvp, int inv, int option_dc, float spb) {
int errs = 0;
int pos;
int step = 1;
char sign = 0;
if (symlen != 1) step = 2;
if (inv) sign=1;
for (pos = 0; pos < len; pos += step) {
read_bufbit(symlen, rawbits+pos, mvp+1-(int)(len*spb), pos==0, spb);
}
rawbits[pos] = '\0';
while (len > 0) {
if ((rawbits[len-1]^sign) != hdr[len-1]) errs += 1;
len--;
}
if (option_dc && errs < 3) {
dc_ofs += dc;
}
return errs;
}
/* -------------------------------------------------------------------------- */
#define SQRT2 1.4142135624 // sqrt(2)
// sigma = sqrt(log(2)) / (2*PI*BT):
//#define SIGMA 0.2650103635 // BT=0.5: 0.2650103635 , BT=0.3: 0.4416839392
// Gaussian FM-pulse
static double Q(double x) {
return 0.5 - 0.5*erf(x/SQRT2);
}
static double pulse(double t, double sigma) {
return Q((t-0.5)/sigma) - Q((t+0.5)/sigma);
}
static double norm2_match(float *match, int n) {
int i;
double x, y = 0.0;
for (i = 0; i < n; i++) {
x = match[i];
y += x*x;
}
return y;
}
static int init_buffers() {
int i, j, pos;
double t;
double b0, b1, b2, b;
float normMatch;
int p2 = 1;
int K, NN;
int n, k;
float *match = NULL;
float *m = NULL;
double BT = 0.5;
double sigma = sqrt(log(2)) / (2*M_PI*BT);
char *bits = NULL;
float spb = 0.0;
int hLen = 0;
for (j = 0; j < Nrs; j++) {
rs_hdr[j].spb = sample_rate/(float)rs_hdr[j].bps;
rs_hdr[j].hLen = strlen(rs_hdr[j].header);
rs_hdr[j].N = rs_hdr[j].hLen * rs_hdr[j].spb + 0.5;
if (rs_hdr[j].hLen > hLen) hLen = rs_hdr[j].hLen;
}
NN = hLen * sample_rate/2500.0 + 0.5; // max(hLen*spb)
M = 2*NN;
//if (samples_per_bit < 6) M = 6*N;
delay = NN/16;
sample_in = 0;
p2 = 1;
while (p2 < M) p2 <<= 1;
while (p2 < 0x2000) p2 <<= 1; // or 0x4000, if sample not too short
M = p2;
N_DFT = p2;
#ifdef ZEROPAD
M -= 1;
N_DFT <<= 1;
#endif
LOG2N = log(N_DFT)/log(2)+0.1; // 32bit cpu ... intermediate floating-point precision
//while ((1 << LOG2N) < N_DFT) LOG2N++; // better N_DFT = (1 << LOG2N) ...
K = M-NN - delay; // N+K < M
Nvar = NN; // wenn Nvar fuer xnorm, dann Nvar=rshd.N
rawbits = (char *)calloc( hLen+1, sizeof(char)); if (rawbits == NULL) return -100;
bufs = (float *)calloc( M+1, sizeof(float)); if (bufs == NULL) return -100;
xs = (float *)calloc( M+1, sizeof(float)); if (xs == NULL) return -100;
/*
qs = (float *)calloc( M+1, sizeof(float)); if (qs == NULL) return -100;
*/
xn = calloc(N_DFT+1, sizeof(float)); if (xn == NULL) return -1;
db = calloc(N_DFT+1, sizeof(float)); if (db == NULL) return -1;
ew = calloc(LOG2N+1, sizeof(complex float)); if (ew == NULL) return -1;
X = calloc(N_DFT+1, sizeof(complex float)); if (X == NULL) return -1;
Z = calloc(N_DFT+1, sizeof(complex float)); if (Z == NULL) return -1;
cx = calloc(N_DFT+1, sizeof(complex float)); if (cx == NULL) return -1;
for (n = 0; n < LOG2N; n++) {
k = 1 << n;
ew[n] = cexp(-I*M_PI/(float)k);
}
match = (float *)calloc( NN+1, sizeof(float)); if (match == NULL) return -1;
m = (float *)calloc(N_DFT+1, sizeof(float)); if (m == NULL) return -1;
for (j = 0; j < Nrs-1; j++)
{
rs_hdr[j].Fm = (float complex *)calloc(N_DFT+1, sizeof(complex float)); if (rs_hdr[j].Fm == NULL) return -1;
bits = rs_hdr[j].header;
spb = rs_hdr[j].spb;
sigma = sqrt(log(2)) / (2*M_PI*rs_hdr[j].BT);
for (i = 0; i < rs_hdr[j].N; i++) {
pos = i/spb;
t = (i - pos*spb)/spb - 0.5;
b1 = ((bits[pos] & 0x1) - 0.5)*2.0;
b = b1*pulse(t, sigma);
if (pos > 0) {
b0 = ((bits[pos-1] & 0x1) - 0.5)*2.0;
b += b0*pulse(t+1, sigma);
}
if (pos < hLen-1) {
b2 = ((bits[pos+1] & 0x1) - 0.5)*2.0;
b += b2*pulse(t-1, sigma);
}
match[i] = b;
}
normMatch = sqrt(norm2_match(match, rs_hdr[j].N));
for (i = 0; i < rs_hdr[j].N; i++) {
match[i] /= normMatch;
}
for (i = 0; i < rs_hdr[j].N; i++) m[rs_hdr[j].N-1 - i] = match[i];
while (i < N_DFT) m[i++] = 0.0;
dft(m, rs_hdr[j].Fm);
}
free(match); match = NULL;
free(m); m = NULL;
return K;
}
static int free_buffers() {
int j;
if (bufs) { free(bufs); bufs = NULL; }
if (xs) { free(xs); xs = NULL; }
/*
if (qs) { free(qs); qs = NULL; }
*/
if (rawbits) { free(rawbits); rawbits = NULL; }
if (xn) { free(xn); xn = NULL; }
if (db) { free(xn); xn = NULL; }
if (ew) { free(ew); ew = NULL; }
if (X) { free(X); X = NULL; }
if (Z) { free(Z); Z = NULL; }
if (cx) { free(cx); cx = NULL; }
for (j = 0; j < Nrs-1; j++) {
if (rs_hdr[j].Fm) { free(rs_hdr[j].Fm); rs_hdr[j].Fm = NULL; }
}
return 0;
}
/* ------------------------------------------------------------------------------------ */
int main(int argc, char **argv) {
FILE *fp = NULL;
char *fpname = NULL;
int j;
int k, K;
float mv[Nrs];
unsigned int mv_pos[Nrs], mv0_pos[Nrs];
int mp[Nrs];
int header_found = 0;
int herrs;
float thres = 0.76;
float tl = -1.0;
int j_max;
float mv_max;
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
//fprintf(stderr, " -v, --verbose\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
//else if ( (strcmp(*argv, "--dc") == 0) ) { option_dc = 1; }
else if ( (strcmp(*argv, "-s") == 0) || (strcmp(*argv, "--silent") == 0) ) {
option_silent = 1;
}
else if ( (strcmp(*argv, "-t") == 0) || (strcmp(*argv, "--time") == 0) ) {
++argv;
if (*argv) tl = atof(*argv);
else return -50;
}
else if ( (strcmp(*argv, "--ch2") == 0) ) { wav_channel = 1; } // right channel (default: 0=left)
else if ( (strcmp(*argv, "--ths") == 0) ) {
++argv;
if (*argv) {
thres = atof(*argv);
for (j = 0; j < Nrs; j++) rs_hdr[j].thres = thres;
}
else return -50;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -50;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
j = read_wav_header(fp, wav_channel);
if ( j < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -50;
}
K = init_buffers();
if ( K < 0 ) {
fprintf(stderr, "error: init buffers\n");
return -50;
};
for (j = 0; j < Nrs; j++) {
mv[j] = 0;
mv_pos[j] = 0;
mp[j] = 0;
}
k = 0;
while ( f32buf_sample(fp, option_inv) != EOF ) {
if (tl > 0 && sample_in > (tl+1)*sample_rate) break; // (int)sample_out < 0
k += 1;
if (k >= K-4) {
for (j = 0; j < Nrs-2; j++) {
#ifdef NOC34C50
if ( strncmp(rs_hdr[j].type, "C34C50", 6) == 0 ) continue;
#endif
mv0_pos[j] = mv_pos[j];
mp[j] = getCorrDFT(-1, K, 0, mv+j, mv_pos+j, rs_hdr[j]);
}
k = 0;
}
else {
//for (j = 0; j < Nrs; j++) mv[j] = 0.0;
continue;
}
header_found = 0;
for (j = 0; j < Nrs-2; j++)
{
if (mp[j] > 0 && (mv[j] > rs_hdr[j].thres || mv[j] < -rs_hdr[j].thres)) {
if (mv_pos[j] > mv0_pos[j]) {
herrs = headcmp(1, rs_hdr[j].header, rs_hdr[j].hLen, mv_pos[j], mv[j]<0, 0, rs_hdr[j].spb);
if (herrs < 2) { // max 1 bitfehler in header
if ( strncmp(rs_hdr[j].type, "IMET", 4) == 0 )
{
int n, m;
int D = N_DFT/2 - 3;
float df;
float pow2200, pow2400;
int bin2200, bin2400;
for (n = 0; n < N_DFT; n++) {
xn[n] = 0.0;
db[n] = 0.0;
}
n = 0;
while (n < sample_rate) { // 1 sec
if (f32buf_sample(fp, option_inv) == EOF) break;//goto ende;
xn[n % D] = bufs[sample_out % M];
n++;
if (n % D == 0) {
dft(xn, X);
for (m = 0; m < N_DFT; m++) db[m] += cabs(X[m]);
}
}
df = bin2freq(1);
m = 50.0/df;
if (m < 1) m = 1;
if (freq2bin(2500) > N_DFT/2) goto ende;
bin2200 = freq2bin(2200);
pow2200 = 0.0;
for (n = 0; n < m; n++) pow2200 += db[ bin2200 - m/4 + n ];
bin2400 = freq2bin(2400);
pow2400 = 0.0;
for (n = 0; n < m; n++) pow2400 += db[ bin2400 - m/4 + n ];
mv[j] = fabs(mv[j]);
if (pow2200 > pow2400) { // IMET1RS
mv[idxRS] = mv[j];
mv[j] = 0; // IMET1 -> IMET1RS
mv_pos[idxRS] = mv_pos[j];
j = idxRS;
header_found = 1;
}
else { // IMET1AB
mv[j] = 0;
j = idxAB;
mv_pos[j] = sample_out;
n = 0;
// detect header/polarity
k = 0;
while ( n < 4*sample_rate && f32buf_sample(fp, option_inv) != EOF ) {
n += 1;
k += 1;
if (k >= K-4) {
mv0_pos[j] = mv_pos[j];
mp[j] = getCorrDFT(-1, K, 0, mv+j, mv_pos+j, rs_hdr[j]);
k = 0;
}
else {
//mv[j] = 0.0;
continue;
}
if (mp[j] > 0 && (mv[j] > rs_hdr[j].thres || mv[j] < -rs_hdr[j].thres)) {
header_found = 1;
if (mv[j] < 0) header_found = -1;
break;
}
mv[j] = 0.0;
}
}
}
else header_found = 1;
if (header_found) {
if (!option_silent) {
if (option_verbose) fprintf(stdout, "sample: %d\n", mv_pos[j]);
fprintf(stdout, "%s: %.4f\n", rs_hdr[j].type, mv[j]);
}
if ((j < 3) && mv[j] < 0) header_found = -1;
}
}
}
}
}
if (header_found) break;
header_found = 0;
for (j = 0; j < Nrs; j++) mv[j] = 0.0;
}
ende:
free_buffers();
fclose(fp);
// return only best result
// latest: j
k = j;
j_max = 0;
mv_max = 0.0;
for (j = 0; j < Nrs; j++) {
if ( fabs(mv_max) < fabs(mv[j]) ) {
mv_max = mv[j];
j_max = j;
}
}
// rs_hdr[k].tn
return (header_found * rs_hdr[j_max].tn);
}