RS-tracker/dfm/dfm06ptu.c

1465 wiersze
41 KiB
C

/*
*
* DFM-06 und DFM-09 haben unterschiedliche Polaritaet bzw. Manchester-Varianten
* (Polaritaet PS-15 wie DFM-06)
* DFM-06 hat Kanaele 0..6 (anfangs nur 0..5)
* DFM-09 hat Kanaele 0..A
* Ausnahme: erste DFM-09-Versionen senden wie DFM-06
* PS-15 hat Kanaele 0..7
*
* Optionen:
* -v, -vv verbose/velocity, SN
* -r, -R raw frames
* -i invertiert Signal (DFM-06 / DFM-09)
* -b,-b2 alternative Demodulation (symbol/bit integration)
* --ecc Hamming Error Correction
* --ptu PTU: temperature
* --auto detect polarity/SN
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
typedef unsigned char ui8_t;
typedef unsigned int ui32_t;
typedef struct {
int frnr;
int sonde_typ;
ui32_t SN6;
ui32_t SN;
int week; int gpssec;
int jahr; int monat; int tag;
int std; int min; float sek;
double lat; double lon; double alt;
double dir; double horiV; double vertV;
float meas24[5];
float status[2];
char sonde_id[16]; // "ID__:xxxxxxxx\0\0"
} gpx_t;
gpx_t gpx;
char dat_str[9][13+1];
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_inv = 0, // invertiert Signal
option_auto = 0,
option_avg = 0, // moving average
option_b = 0,
option_ecc = 0,
option_ptu = 0,
wavloaded = 0;
int wav_channel = 0; // audio channel: left
int ptu_out = 0;
int start = 0;
/* -------------------------------------------------------------------------- */
// option_b: exakte Baudrate wichtig!
// eventuell in header ermittelbar
#define BAUD_RATE 2500
int sample_rate = 0, bits_sample = 0, channels = 0;
float samples_per_bit = 0;
int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
int read_wav_header(FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/(float)BAUD_RATE;
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
return 0;
}
#define EOF_INT 0x1000000
#define LEN_movAvg 3
int movAvg[LEN_movAvg];
unsigned long sample_count = 0;
int read_signed_sample(FILE *fp) { // int = i32_t
int byte, i, sample=0, s=0; // EOF -> 0x1000000
for (i = 0; i < channels; i++) {
// i = 0: links bzw. mono
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == wav_channel) sample = byte;
if (bits_sample == 16) {
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == wav_channel) sample += byte << 8;
}
}
if (bits_sample == 8) s = sample-128; // 8bit: 00..FF, centerpoint 0x80=128
if (bits_sample == 16) s = (short)sample;
if (option_avg) {
movAvg[sample_count % LEN_movAvg] = s;
s = 0;
for (i = 0; i < LEN_movAvg; i++) s += movAvg[i];
s = (s+0.5) / LEN_movAvg;
}
sample_count++;
return s;
}
int par=1, par_alt=1;
int read_bits_fsk(FILE *fp, int *bit, int *len) {
static int sample;
int n;
float l;
n = 0;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
par_alt = par;
par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
n++;
} while (par*par_alt > 0);
l = (float)n / samples_per_bit;
*len = (int)(l+0.5);
if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1
else *bit = (1-par_alt)/2; // sdr#<rev1381?, invers: unten 1, oben -1
// *bit = (1+inv*par_alt)/2; // ausser inv=0
/* Y-offset ? */
return 0;
}
int bitstart = 0;
double bitgrenze = 0;
unsigned long scount = 0;
int read_rawbit(FILE *fp, int *bit) {
int sample;
int sum;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
int read_rawbit2(FILE *fp, int *bit) {
int sample;
int sum;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum -= sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
float *wc = NULL;
int read_rawbit3(FILE *fp, int *bit) {
int sample;
int n;
float sum;
sum = 0;
n = 0;
if (bitstart) {
n = 1; // sample*wc[0] ?
scount = 1; // (sample_count overflow/wrap-around)
bitgrenze = 0; // d.h. bitgrenze = sample_count-1 (?)
bitstart = 0;
}
bitgrenze += 2*samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample*wc[n];
n++;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
typedef struct {
ui8_t hb;
float sb;
} hsbit_t;
int soft_read_rawbit2(FILE *fp, hsbit_t *shb) {
int sample;
int sum;
ui8_t bit = 0;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum -= sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (option_inv) sum = -sum; // sum=0 bleibt bit=1
// jedoch sb und hb werden zusammen invertiert
if (sum >= 0) bit = 1;
else bit = 0;
shb->hb = bit;
shb->sb = sum;
return 0;
}
/* -------------------------------------------------------------------------- */
//#define BITS (2*8) // 16
#define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header)
#define HEADOFS 0
char header[] = "01100101011001101010010110101010";
char buf[HEADLEN+1] = "xxxxxxxxxx\0";
int bufpos = -1;
#define BITFRAME_LEN 280
#define RAWBITFRAME_LEN (BITFRAME_LEN*2)
#define FRAMESTART (HEADOFS+HEADLEN)
char frame_rawbits[RAWBITFRAME_LEN+8] = "01100101011001101010010110101010"; //->"0100010111001111";
char frame_bits[BITFRAME_LEN+4];
hsbit_t frm[BITFRAME_LEN+4];
void inc_bufpos() {
bufpos = (bufpos+1) % HEADLEN;
}
char cb_inv(char c) {
if (c == '0') return '1';
if (c == '1') return '0';
return c;
}
// Gefahr bei Manchester-Codierung: inverser Header wird leicht fehl-erkannt
// da manchester1 und manchester2 nur um 1 bit verschoben
int compare2() {
int i, j;
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break;
j--;
i++;
}
if (i == HEADLEN) return 1;
if (option_auto) {
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != cb_inv(header[HEADOFS+HEADLEN-1-i])) break;
j--;
i++;
}
if (i == HEADLEN) return -1;
}
return 0;
}
// manchester1 1->10,0->01: 1.bit
// manchester2 0->10,1->01: 2.bit
void manchester1(char* frame_rawbits, char *frame_bits, int pos) {
int i, c, out, buf;
char bit, bits[2];
c = 0;
for (i = 0; i < pos/2; i++) { // -16
bits[0] = frame_rawbits[2*i];
bits[1] = frame_rawbits[2*i+1];
if ((bits[0] == '0') && (bits[1] == '1')) { bit = '0'; out = 1; }
else
if ((bits[0] == '1') && (bits[1] == '0')) { bit = '1'; out = 1; }
else { //
if (buf == 0) { c = !c; out = 0; buf = 1; }
else { bit = 'x'; out = 1; buf = 0; }
}
if (out) frame_bits[i] = bit;
}
}
/* -------------------------------------------------------------------------- */
#define B 8 // codeword: 8 bit
#define S 4 // davon 4 bit data
#define HEAD 0 // 16 bit
#define CONF (16+0) // 56 bit
#define DAT1 (16+56) // 104 bit
#define DAT2 (16+160) // 104 bit
// frame: 280 bit
ui8_t G[8][4] = // Generator
{{ 1, 0, 0, 0},
{ 0, 1, 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
{ 0, 1, 1, 1},
{ 1, 0, 1, 1},
{ 1, 1, 0, 1},
{ 1, 1, 1, 0}};
ui8_t H[4][8] = // Parity-Check
{{ 0, 1, 1, 1, 1, 0, 0, 0},
{ 1, 0, 1, 1, 0, 1, 0, 0},
{ 1, 1, 0, 1, 0, 0, 1, 0},
{ 1, 1, 1, 0, 0, 0, 0, 1}};
ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H:
// 1-bit-error-Syndrome
ui8_t hamming_conf[ 7*B]; // 7*8=56
ui8_t hamming_dat1[13*B]; // 13*8=104
ui8_t hamming_dat2[13*B];
ui8_t block_conf[ 7*S]; // 7*4=28
ui8_t block_dat1[13*S]; // 13*4=52
ui8_t block_dat2[13*S];
hsbit_t soft_hamming_conf[ 7*B]; // 7*8=56
hsbit_t soft_hamming_dat1[13*B]; // 13*8=104
hsbit_t soft_hamming_dat2[13*B];
ui8_t codewords[16][8];
int nib4bits(ui8_t nib, ui8_t *bits) { // big endian
int j;
nib &= 0xF;
for (j = 0; j < 4; j++) {
bits[j] = (nib>>(3-j)) & 0x1;
}
return 0;
}
int gencode(ui8_t msg[4], ui8_t code[8]) {
int i, j; // Gm=c
for (i = 0; i < 8; i++) {
code[i] = 0;
for (j = 0; j < 4; j++) {
code[i] ^= G[i][j] & msg[j];
}
}
return 0;
}
ui32_t bits2val(ui8_t *bits, int len) { // big endian
int j;
ui32_t val;
if ((len < 0) || (len > 32)) return -1;
val = 0;
for (j = 0; j < len; j++) {
val |= (bits[j] << (len-1-j));
}
return val;
}
void deinterleave(char *str, int L, ui8_t *block) {
int i, j;
for (j = 0; j < B; j++) { // L = 7, 13
for (i = 0; i < L; i++) {
if (str[L*j+i] >= 0x30 && str[L*j+i] <= 0x31) {
block[B*i+j] = str[L*j+i] - 0x30; // ASCII -> bit
}
}
}
}
void soft_deinterleave(hsbit_t *str, int L, hsbit_t *block) {
int i, j;
for (j = 0; j < B; j++) { // L = 7, 13
for (i = 0; i < L; i++) {
block[B*i+j] = str[L*j+i];
}
}
}
int check(ui8_t code[8]) {
int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt,
ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser,
ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision.
int ret=0;
for (i = 0; i < 4; i++) { // S = 4
syndrom[i] = 0;
for (j = 0; j < 8; j++) { // B = 8
syndrom[i] ^= H[i][j] & code[j];
}
}
synval = bits2val(syndrom, 4);
if (synval) {
ret = -1;
for (j = 0; j < 8; j++) { // 1-bit-error
if (synval == He[j]) { // reicht auf databits zu pruefen, d.h.
ret = j+1; // (systematischer Code) He[0..3]
break;
}
}
}
else ret = 0;
if (ret > 0) code[ret-1] ^= 0x1;
return ret;
}
int hamming(ui8_t *ham, int L, ui8_t *sym) {
int i, j;
int ret = 0; // L = 7, 13
for (i = 0; i < L; i++) { // L * 2 nibble (data+parity)
if (option_ecc) ret |= check(ham+B*i);
for (j = 0; j < S; j++) { // systematic: bits 0..S-1 data
sym[S*i+j] = ham[B*i+j];
}
}
return ret;
}
int soft_check(hsbit_t code[8]) {
int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt,
ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser,
ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision.
int ret=0;
for (i = 0; i < 4; i++) { // S = 4
syndrom[i] = 0;
for (j = 0; j < 8; j++) { // B = 8
syndrom[i] ^= H[i][j] & code[j].hb;
}
}
synval = bits2val(syndrom, 4);
if (synval) {
ret = -1;
for (j = 0; j < 8; j++) { // 1-bit-error
if (synval == He[j]) { // reicht auf databits zu pruefen, d.h.
ret = j+1; // (systematischer Code) He[0..3]
break;
}
}
}
else ret = 0; // d=0: valid codeword
if (ret > 0) code[ret-1].hb ^= 0x1; // d=1: 1-bit-error
else if (ret < 0 && option_ecc == 2) { // d=2: 2-bit-error: soft decision
int n;
int count = 0;
int maxn = -1;
int d = 0;
float sum = 0.0;
float maxsum = 0.0;
for (n = 0; n < 16; n++) {
d = 0;
for (i = 0; i < 8; i++) { // d(a,b) = sum_i a[i]^b[i]
if (code[i].hb != codewords[n][i]) d++;
}
if (d == 2) { // dist=2
count++;
// sum softbits
// correlation: - interleaving
// + no pulse-shaping -> sum
//
sum = 0.0;
for (i = 0; i < 8; i++) {
sum += (2*codewords[n][i]-1) * code[i].sb;
}
if (sum >= maxsum) {
maxsum = sum;
maxn = n;
}
}
}
if (maxn >= 0) {
for (i = 0; i < 8; i++) {
if (code[i].hb = codewords[maxn][i]);
}
//ret = 0x100;
}
}
return ret;
}
int soft_hamming(hsbit_t *ham, int L, ui8_t *sym) {
int i, j;
int ret = 0; // L = 7, 13
for (i = 0; i < L; i++) { // L * 2 nibble (data+parity)
if (option_ecc) ret |= soft_check(ham+B*i);
for (j = 0; j < S; j++) { // systematic: bits 0..S-1 data
sym[S*i+j] = ham[B*i+j].hb;
}
}
return ret;
}
char nib2chr(ui8_t nib) {
char c = '_';
if (nib < 0x10) {
if (nib < 0xA) c = 0x30 + nib;
else c = 0x41 + nib-0xA;
}
return c;
}
int dat_out(ui8_t *dat_bits) {
int i, ret = 0;
static int fr_id;
// int jahr = 0, monat = 0, tag = 0, std = 0, min = 0;
int frnr = 0;
int msek = 0;
int lat = 0, lon = 0, alt = 0;
int nib;
int dvv; // signed/unsigned 16bit
fr_id = bits2val(dat_bits+48, 4);
if (fr_id >= 0 && fr_id <= 8) {
for (i = 0; i < 13; i++) {
nib = bits2val(dat_bits+4*i, 4);
dat_str[fr_id][i] = nib2chr(nib);
}
dat_str[fr_id][13] = '\0';
}
if (fr_id == 0) {
start = 1;
frnr = bits2val(dat_bits+24, 8);
gpx.frnr = frnr;
}
if (fr_id == 1) {
// 00..31: ? GPS-Sats in Sicht?
msek = bits2val(dat_bits+32, 16); // UTC (= GPS - 18sec ab 1.1.2017)
gpx.sek = msek/1000.0;
}
if (fr_id == 2) {
lat = bits2val(dat_bits, 32);
gpx.lat = lat/1e7;
dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein
gpx.horiV = dvv/1e2;
}
if (fr_id == 3) {
lon = bits2val(dat_bits, 32);
gpx.lon = lon/1e7;
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
gpx.dir = dvv/1e2;
}
if (fr_id == 4) {
alt = bits2val(dat_bits, 32);
gpx.alt = alt/1e2;
dvv = (short)bits2val(dat_bits+32, 16); // signed
gpx.vertV = dvv/1e2;
}
if (fr_id == 5) {
}
if (fr_id == 6) { // sat data
}
if (fr_id == 7) { // sat data
}
if (fr_id == 8) {
gpx.jahr = bits2val(dat_bits, 12);
gpx.monat = bits2val(dat_bits+12, 4);
gpx.tag = bits2val(dat_bits+16, 5);
gpx.std = bits2val(dat_bits+21, 5);
gpx.min = bits2val(dat_bits+26, 6);
}
ret = fr_id;
return ret;
}
// DFM-06 (NXP8)
float fl20(int d) { // float20
int val, p;
float f;
p = (d>>16) & 0xF;
val = d & 0xFFFF;
f = val/(float)(1<<p);
return f;
}
/*
float flo20(int d) {
int m, e;
float f1, f;
m = d & 0xFFFF;
e = (d >> 16) & 0xF;
f = m / pow(2,e);
return f;
}
*/
// DFM-09 (STM32)
float fl24(int d) { // float24
int val, p;
float f;
p = (d>>20) & 0xF;
val = d & 0xFFFFF;
f = val/(float)(1<<p);
return f;
}
// temperature approximation
float get_Temp(float *meas) { // meas[0..4]
// NTC-Thermistor EPCOS B57540G0502
// R/T No 8402, R25=Ro=5k
// B0/100=3450
// 1/T = 1/To + 1/B log(r) , r=R/Ro
// GRAW calibration data -80C..+40C on EEPROM ?
// meas0 = g*(R + Rs)
// meas3 = g*Rs , Rs: dfm6:10k, dfm9:20k
// meas4 = g*Rf , Rf=220k
float B0 = 3260.0; // B/Kelvin, fit -55C..+40C
float T0 = 25 + 273.15; // t0=25C
float R0 = 5.0e3; // R0=R25=5k
float Rf = 220e3; // Rf = 220k
float g = meas[4]/Rf;
float R = (meas[0]-meas[3]) / g; // meas[0,3,4] > 0 ?
float T = 0; // T/Kelvin
if (meas[0]*meas[3]*meas[4] == 0) R = 0;
if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0));
return T - 273.15; // Celsius
// DFM-06: meas20 * 16 = meas24
// -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4]
}
float get_Temp2(float *meas) { // meas[0..4]
// NTC-Thermistor EPCOS B57540G0502
// R/T No 8402, R25=Ro=5k
// B0/100=3450
// 1/T = 1/To + 1/B log(r) , r=R/Ro
// GRAW calibration data -80C..+40C on EEPROM ?
// meas0 = g*(R+Rs)+ofs
// meas3 = g*Rs+ofs , Rs: dfm6:10k, dfm9:20k
// meas4 = g*Rf+ofs , Rf=220k
float f = meas[0],
f1 = meas[3],
f2 = meas[4];
float B0 = 3260.0; // B/Kelvin, fit -55C..+40C
float T0 = 25 + 273.15; // t0=25C
float R0 = 5.0e3; // R0=R25=5k
float Rf2 = 220e3; // Rf2 = Rf = 220k
float g_o = f2/Rf2; // approx gain
float Rs_o = f1/g_o; // = Rf2 * f1/f2;
float Rf1 = Rs_o; // Rf1 = Rs: dfm6:10k, dfm9:20k
float g = g_o; // gain
float Rb = 0.0; // offset
float R = 0; // thermistor
float T = 0; // T/Kelvin
if ( 8e3 < Rs_o && Rs_o < 12e3) Rf1 = 10e3; // dfm6
else if (18e3 < Rs_o && Rs_o < 22e3) Rf1 = 20e3; // dfm9
g = (f2 - f1) / (Rf2 - Rf1);
Rb = (f1*Rf2-f2*Rf1)/(f2-f1); // ofs/g
R = (f-f1)/g; // meas[0,3,4] > 0 ?
if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0));
if (option_ptu && ptu_out && option_verbose == 2) {
printf(" (Rso: %.1f , Rb: %.1f)", Rs_o/1e3, Rb/1e3);
}
return T - 273.15;
// DFM-06: meas20 * 16 = meas24
}
float get_Temp4(float *meas) { // meas[0..4]
// NTC-Thermistor EPCOS B57540G0502
// [ T/C , R/R25 , alpha ] :
// [ -55.0 , 51.991 , 6.4 ]
// [ -50.0 , 37.989 , 6.2 ]
// [ -45.0 , 28.07 , 5.9 ]
// [ -40.0 , 20.96 , 5.7 ]
// [ -35.0 , 15.809 , 5.5 ]
// [ -30.0 , 12.037 , 5.4 ]
// [ -25.0 , 9.2484 , 5.2 ]
// [ -20.0 , 7.1668 , 5.0 ]
// [ -15.0 , 5.5993 , 4.9 ]
// [ -10.0 , 4.4087 , 4.7 ]
// [ -5.0 , 3.4971 , 4.6 ]
// [ 0.0 , 2.7936 , 4.4 ]
// [ 5.0 , 2.2468 , 4.3 ]
// [ 10.0 , 1.8187 , 4.2 ]
// [ 15.0 , 1.4813 , 4.0 ]
// [ 20.0 , 1.2136 , 3.9 ]
// [ 25.0 , 1.0000 , 3.8 ]
// [ 30.0 , 0.82845 , 3.7 ]
// [ 35.0 , 0.68991 , 3.6 ]
// [ 40.0 , 0.57742 , 3.5 ]
// -> Steinhart–Hart coefficients (polyfit):
float p0 = 1.09698417e-03,
p1 = 2.39564629e-04,
p2 = 2.48821437e-06,
p3 = 5.84354921e-08;
// T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 )
float Rf = 220e3; // Rf = 220k
float g = meas[4]/Rf;
float R = (meas[0]-meas[3]) / g; // meas[0,3,4] > 0 ?
float T = 0; // T/Kelvin
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
return T - 273.15; // Celsius
// DFM-06: meas20 * 16 = meas24
// -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4]
}
#define SNbit 0x0100
int conf_out(ui8_t *conf_bits) {
int ret = 0;
int val;
ui8_t conf_id;
ui8_t hl;
ui32_t SN6, SN;
static int chAbit, chA[2];
static int chCbit, chC[2];
static int chDbit, chD[2];
static int ch7bit, ch7[2];
static ui32_t SN_A, SN_C, SN_D, SN_7;
static ui8_t max_ch;
static ui8_t nul_ch;
static ui8_t sn2_ch, sn_ch;
static ui32_t SN_X;
static int chXbit, chX[2];
static ui8_t dfm6typ;
conf_id = bits2val(conf_bits, 4);
if (conf_id > 4 && bits2val(conf_bits+8, 4*5) == 0) nul_ch = bits2val(conf_bits, 8);
dfm6typ = ((nul_ch & 0xF0)==0x50) && (nul_ch & 0x0F);
if (dfm6typ) ptu_out = 6;
if (dfm6typ && (gpx.sonde_typ & 0xF) > 6)
{ // reset if 0x5A, 0x5B (DFM-06)
gpx.sonde_typ = 0;
max_ch = conf_id;
}
if (conf_id > 4 && conf_id > max_ch) max_ch = conf_id; // mind. 5 Kanaele // reset? lower 0xsCaaaab?
if (conf_id > 4 && conf_id == (nul_ch>>4)+1)
{
sn2_ch = bits2val(conf_bits, 8);
if (option_auto)
{
sn_ch = ((sn2_ch>>4) & 0xF);
if (conf_id == sn_ch)
{
if ( (nul_ch & 0x58) == 0x58 ) { // 0x5A, 0x5B
SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6
if (SN6 == gpx.SN6 && SN6 != 0) { // nur Nibble-Werte 0..9
gpx.sonde_typ = SNbit | 6;
ptu_out = 6;
sprintf(gpx.sonde_id, "ID06:%6X", gpx.SN6);
}
else { // reset
gpx.sonde_typ = 0;
}
gpx.SN6 = SN6;
}
else if ( (sn2_ch & 0xF) == 0xC // 0xsCaaaab, s==sn_ch , s: 0xA=DFM-09 , 0xC/0xD=DFM-17?
|| (sn2_ch & 0xF) == 0x0 ) // 0xs0aaaab, s==sn_ch , s: 0x7,0x8: pilotsonde PS-15?
{
val = bits2val(conf_bits+8, 4*5);
hl = (val & 1);
chX[hl] = (val >> 4) & 0xFFFF;
chXbit |= 1 << hl;
if (chXbit == 3) {
SN = (chX[0] << 16) | chX[1];
if ( SN == SN_X || SN_X == 0 ) {
gpx.sonde_typ = SNbit | sn_ch;
gpx.SN = SN;
if (sn_ch == 0xA /*&& (sn2_ch & 0xF) == 0xC*/) ptu_out = 9; else ptu_out = 0;
// PS-15 ? (sn2_ch & 0xF) == 0x0 : ptu_out = 0
// DFM-17? (sn_ch == 0xC) ptu_out = 9 ? // test 0xD ...?
if ( (gpx.sonde_typ & 0xF) == 0xA) {
sprintf(gpx.sonde_id, "ID09:%6u", gpx.SN);
}
else {
sprintf(gpx.sonde_id, "ID-%1X:%6u", gpx.sonde_typ & 0xF, gpx.SN);
}
}
else { // reset
gpx.sonde_typ = 0;
}
SN_X = SN;
chXbit = 0;
}
}
ret = (gpx.sonde_typ & 0xF);
}
}
}
if (option_auto == 0) {
// gibt es Kanaele > 6 (2-teilige ID)?
// if (conf_id > 6) gpx.SN6 = 0; // -> DFM-09,PS-15 // SNbit?
//
// SN/ID immer im letzten Kanal? davor xy00000-Kanal? (mind. 1)
if ((gpx.sonde_typ & 0xF) < 7 && conf_id == 6) {
SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6
if (SN6 == gpx.SN6 && SN6 != 0) { // nur Nibble-Werte 0..9
gpx.sonde_typ = SNbit | 6;
ptu_out = 6;
ret = 6;
sprintf(gpx.sonde_id, "ID06:%6X", gpx.SN6);
}
else {
gpx.sonde_typ = 0;
}
gpx.SN6 = SN6;
}
if (conf_id == 0xA) { // 0xACxxxxy , DFM-09
val = bits2val(conf_bits+8, 4*5);
hl = (val & 1); // val&0xF 0,1?
chA[hl] = (val >> 4) & 0xFFFF;
chAbit |= 1 << hl;
if (chAbit == 3) { // DFM-09: Kanal A
SN = (chA[0] << 16) | chA[1];
if ( SN == SN_A ) {
gpx.sonde_typ = SNbit | 0xA;
gpx.SN = SN;
ptu_out = 9;
ret = 9;
sprintf(gpx.sonde_id, "ID09:%6u", gpx.SN);
}
else {
gpx.sonde_typ = 0;
}
SN_A = SN;
chAbit = 0;
}
}
if (conf_id == 0xC) { // 0xCCxxxxy , DFM-17?
val = bits2val(conf_bits+8, 4*5);
hl = (val & 1);
chC[hl] = (val >> 4) & 0xFFFF;
chCbit |= 1 << hl;
if (chCbit == 3) { // DFM-17? Kanal C
SN = (chC[0] << 16) | chC[1];
if ( SN == SN_C ) {
gpx.sonde_typ = SNbit | 0xC;
gpx.SN = SN;
ptu_out = 9;
ret = 17;
sprintf(gpx.sonde_id, "ID-%1X:%6u", gpx.sonde_typ & 0xF, gpx.SN);
}
else {
gpx.sonde_typ = 0;
}
SN_C = SN;
chCbit = 0;
}
}
if (conf_id == 0xD) { // 0xDCxxxxy , DFM-17?
val = bits2val(conf_bits+8, 4*5);
hl = (val & 1);
chD[hl] = (val >> 4) & 0xFFFF;
chDbit |= 1 << hl;
if (chDbit == 3) { // DFM-17? Kanal D
SN = (chD[0] << 16) | chD[1];
if ( SN == SN_D ) {
gpx.sonde_typ = SNbit | 0xD;
gpx.SN = SN;
ptu_out = 9;
ret = 18;
sprintf(gpx.sonde_id, "ID-%1X:%6u", gpx.sonde_typ & 0xF, gpx.SN);
}
else {
gpx.sonde_typ = 0;
}
SN_D = SN;
chDbit = 0;
}
}
if (conf_id == 0x7) { // 0x70xxxxy , pilotsonde PS-15?
val = bits2val(conf_bits+8, 4*5);
hl = (val & 1);
ch7[hl] = (val >> 4) & 0xFFFF;
ch7bit |= 1 << hl;
if (ch7bit == 3) { // PS-15: Kanal 7
SN = (ch7[0] << 16) | ch7[1];
if ( SN == SN_7 ) {
gpx.sonde_typ = SNbit | 0x7;
gpx.SN = SN;
ptu_out = 0;
ret = 15;
sprintf(gpx.sonde_id, "ID15:%6u", gpx.SN);
}
else {
gpx.sonde_typ = 0;
}
SN_7 = SN;
ch7bit = 0;
}
}
}
if (conf_id >= 0 && conf_id <= 4) {
val = bits2val(conf_bits+4, 4*6);
gpx.meas24[conf_id] = fl24(val);
// DFM-09 (STM32): 24bit 0exxxxx
// DFM-06 (NXP8): 20bit 0exxxx0
// fl20(bits2val(conf_bits+4, 4*5))
// = fl20(exxxx)
// = fl24(exxxx0)/2^4
// meas20 * 16 = meas24
}
// STM32-status: Bat, MCU-Temp
if ((gpx.sonde_typ & 0xF) == 0xA) { // DFM-09 (STM32)
if (conf_id == 0x5) { // voltage
val = bits2val(conf_bits+8, 4*4);
gpx.status[0] = val/1000.0;
}
if (conf_id == 0x6) { // T-intern (STM32)
val = bits2val(conf_bits+8, 4*4);
gpx.status[1] = val/100.0;
}
}
return ret;
}
void print_gpx() {
int i, j;
if (start) {
if (option_raw == 2) {
for (i = 0; i < 9; i++) {
printf(" %s", dat_str[i]);
}
for (i = 0; i < 9; i++) {
for (j = 0; j < 13; j++) dat_str[i][j] = ' ';
}
}
else {
if (option_auto && option_verbose) printf("[%c] ", option_inv?'-':'+');
printf("[%3d] ", gpx.frnr);
printf("%4d-%02d-%02d ", gpx.jahr, gpx.monat, gpx.tag);
printf("%02d:%02d:%04.1f ", gpx.std, gpx.min, gpx.sek);
printf(" ");
printf("lat: %.6f ", gpx.lat);
printf("lon: %.6f ", gpx.lon);
printf("alt: %.1f ", gpx.alt);
printf(" vH: %5.2f ", gpx.horiV);
printf(" D: %5.1f ", gpx.dir);
printf(" vV: %5.2f ", gpx.vertV);
if (option_ptu && ptu_out) {
float t = get_Temp(gpx.meas24);
if (t > -270.0) printf(" T=%.1fC ", t);
if (option_verbose == 2) {
float t2 = get_Temp2(gpx.meas24);
float t4 = get_Temp4(gpx.meas24);
if (t2 > -270.0) printf(" T2=%.1fC ", t2);
if (t4 > -270.0) printf(" T4=%.1fC ", t4);
printf(" f0: %.2f ", gpx.meas24[0]);
printf(" f3: %.2f ", gpx.meas24[3]);
printf(" f4: %.2f ", gpx.meas24[4]);
}
}
if (option_verbose == 2 && (gpx.sonde_typ & 0xF) == 0xA) {
printf(" U: %.2fV ", gpx.status[0]);
printf(" Ti: %.1fK ", gpx.status[1]);
}
if (option_verbose)
{
if (gpx.sonde_typ & SNbit) {
printf(" (%s) ", gpx.sonde_id);
gpx.sonde_typ ^= SNbit;
}
}
}
printf("\n");
}
}
void print_frame() {
int i;
int nib = 0;
int frid = -1;
int ret0, ret1, ret2;
if (option_b < 2) {
manchester1(frame_rawbits, frame_bits, RAWBITFRAME_LEN);
}
if (option_ecc == 2) {
soft_deinterleave(frm+CONF, 7, soft_hamming_conf);
soft_deinterleave(frm+DAT1, 13, soft_hamming_dat1);
soft_deinterleave(frm+DAT2, 13, soft_hamming_dat2);
ret0 = soft_hamming(soft_hamming_conf, 7, block_conf);
ret1 = soft_hamming(soft_hamming_dat1, 13, block_dat1);
ret2 = soft_hamming(soft_hamming_dat2, 13, block_dat2);
}
else {
deinterleave(frame_bits+CONF, 7, hamming_conf);
deinterleave(frame_bits+DAT1, 13, hamming_dat1);
deinterleave(frame_bits+DAT2, 13, hamming_dat2);
ret0 = hamming(hamming_conf, 7, block_conf);
ret1 = hamming(hamming_dat1, 13, block_dat1);
ret2 = hamming(hamming_dat2, 13, block_dat2);
}
if (option_raw == 1) {
for (i = 0; i < 7; i++) {
nib = bits2val(block_conf+S*i, S);
printf("%01X", nib & 0xFF);
}
if (option_ecc) {
if (ret0 == 0) printf(" [OK] ");
else if (ret0 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf(" ");
for (i = 0; i < 13; i++) {
nib = bits2val(block_dat1+S*i, S);
printf("%01X", nib & 0xFF);
}
if (option_ecc) {
if (ret1 == 0) printf(" [OK] ");
else if (ret1 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf(" ");
for (i = 0; i < 13; i++) {
nib = bits2val(block_dat2+S*i, S);
printf("%01X", nib & 0xFF);
}
if (option_ecc) {
if (ret2 == 0) printf(" [OK] ");
else if (ret2 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf("\n");
}
else if (option_ecc) {
if (ret0 == 0 || ret0 > 0 || option_ecc == 2) {
conf_out(block_conf);
}
if (ret1 == 0 || ret1 > 0 || option_ecc == 2) {
frid = dat_out(block_dat1);
if (frid == 8) print_gpx();
}
if (ret2 == 0 || ret2 > 0 || option_ecc == 2) {
frid = dat_out(block_dat2);
if (frid == 8) print_gpx();
}
}
else {
conf_out(block_conf);
frid = dat_out(block_dat1);
if (frid == 8) print_gpx();
frid = dat_out(block_dat2);
if (frid == 8) print_gpx();
}
}
/* -------------------------------------------------------------------------- */
int main(int argc, char **argv) {
FILE *fp;
char *fpname;
int pos, i, j, bit, len;
int header_found = 0;
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, -vv\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -i, --invert\n");
fprintf(stderr, " --ecc (Hamming ECC)\n");
fprintf(stderr, " --avg (moving average)\n");
fprintf(stderr, " -b (alt. Demod.)\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if ( (strcmp(*argv, "-vv") == 0) ) {
option_verbose = 2;
}
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) {
option_raw = 2;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 0x1;
}
else if ( (strcmp(*argv, "--auto") == 0) ) {
option_auto = 1;
}
else if ( (strcmp(*argv, "--avg") == 0) ) {
option_avg = 1;
}
else if (strcmp(*argv, "-b" ) == 0) { option_b = 1; }
else if (strcmp(*argv, "-b2") == 0) { option_b = 2; }
else if (strcmp(*argv, "-b3") == 0) { option_b = 3; }
else if ( (strcmp(*argv, "--ecc" ) == 0) ) { option_ecc = 1; }
else if ( (strcmp(*argv, "--ecc2") == 0) ) { option_ecc = 2; }
else if ( (strcmp(*argv, "--ptu") == 0) ) {
option_ptu = 1;
//ptu_out = 1; // force ptu (non PS-15)
}
else if (strcmp(*argv, "--ch2") == 0) { wav_channel = 1; } // right channel (default: 0=left)
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
if (option_ecc == 2) option_b = 2;
i = read_wav_header(fp);
if (i) {
fclose(fp);
return -1;
}
if (option_b > 2) {
wc = (float*)calloc( 2*(int)(samples_per_bit+1), sizeof(float));
for (i = 0; i < 2*samples_per_bit; i++) wc[i] = (i < samples_per_bit) ? 1 : -1; // wie -b2
//for (i = 0; i < 2*samples_per_bit; i++) wc[i] = sin(2*M_PI*i/(2*samples_per_bit));
//for (i = 0; i < 2*samples_per_bit; i++) wc[i] = cos(M_PI*i/(2*samples_per_bit));
}
if (option_ecc == 2) {
ui8_t nib, msg[4], code[8];
for (nib = 0; nib < 16; nib++) {
nib4bits(nib, msg);
gencode(msg, code);
for (i = 0; i < 8; i++) codewords[nib][i] = code[i];
}
}
for (i = 0; i < 9; i++) {
for (j = 0; j < 13; j++) dat_str[i][j] = ' ';
}
pos = FRAMESTART;
while (!read_bits_fsk(fp, &bit, &len)) {
if (len == 0) { // reset_frame();
if (pos > RAWBITFRAME_LEN-10) { // Problem wegen Interleaving
print_frame();//byte_count
header_found = 0;
pos = FRAMESTART;
}
//inc_bufpos();
//buf[bufpos] = 'x';
continue; // ...
}
for (i = 0; i < len; i++) {
inc_bufpos();
buf[bufpos] = 0x30 + bit; // Ascii
if (!header_found) {
header_found = compare2();
if (header_found < 0) option_inv ^= 0x1;
}
else {
frame_rawbits[pos] = 0x30 + bit; // Ascii
pos++;
if (pos == RAWBITFRAME_LEN) {
frame_rawbits[pos] = '\0';
print_frame();//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
}
}
if (header_found && option_b==1) {
bitstart = 1;
while ( pos < RAWBITFRAME_LEN ) {
if (read_rawbit(fp, &bit) == EOF) break;
frame_rawbits[pos] = 0x30 + bit;
pos++;
}
frame_rawbits[pos] = '\0';
print_frame();//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
if (header_found && option_b>=2) {
bitstart = 1;
if (pos%2) {
if (read_rawbit(fp, &bit) == EOF) break;
frame_rawbits[pos] = 0x30 + bit;
pos++;
}
manchester1(frame_rawbits, frame_bits, pos);
pos /= 2;
if (option_ecc == 2) {
for (i = 0; i < pos; i++) {
frm[i].hb = frame_bits[i] % 1;
frm[i].sb = 0.0; // (ecc2) bit=1: sb>0 , bit=0: sb<0
}
}
while ( pos < BITFRAME_LEN ) {
if (option_b == 2) {
if (option_ecc == 2) {
if (soft_read_rawbit2(fp, frm+pos) == EOF) break;
bit = frm[pos].hb;
}
else {
if (read_rawbit2(fp, &bit) == EOF) break;
}
}
else { // option_b==3
if (read_rawbit3(fp, &bit) == EOF) break;
}
frame_bits[pos] = 0x30 + bit;
pos++;
}
frame_bits[pos] = '\0';
print_frame();//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
}
if (option_b > 2) {
if (wc) free(wc); wc = NULL;
}
fclose(fp);
return 0;
}