RS-tracker/demod/multi/dfm09base.c

1358 wiersze
43 KiB
C

/*
* dfm09 (dfm06)
* sync header: correlation/matched filter
* compile:
* gcc -c dfm09base.c
*
* author: zilog80
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
/*
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
*/
#include "demod_base.h"
enum dfmtyp_keys_t {
UNDEF,
UNKNW,
DFM06,
DFM06P,
PS15,
DFM09,
DFM09P,
DFM17,
DFM17P
};
static char *DFM_types[] = {
[UNDEF] = "",
[UNKNW] = "DFMxX",
[DFM06] = "DFM06",
[DFM06P] = "DFM06P",
[PS15] = "PS15",
[DFM09] = "DFM09",
[DFM09P] = "DFM09P",
[DFM17] = "DFM17",
[DFM17P] = "DFM17P"
};
typedef struct {
i8_t vbs; // verbose output
i8_t raw; // raw frames
i8_t crc; // CRC check output
i8_t ecc; // Hamming ECC
i8_t sat; // GPS sat data
i8_t ptu; // PTU: temperature
i8_t aux; // decode xdata
i8_t inv;
i8_t aut;
i8_t jsn; // JSON output (auto_rx)
i8_t dst; // continuous pcks 0..8
i8_t dbg;
} option_t;
typedef struct {
int ec;
float ts;
} pcksts_t;
typedef struct {
ui8_t max_ch;
ui8_t nul_ch;
ui8_t sn_ch;
ui8_t chXbit;
ui32_t SN_X;
ui32_t chX[2];
} sn_t;
typedef struct {
ui32_t prn; // SVs used (PRN)
float dMSL; // Alt_MSL - Alt_ellipsoid = -N = - geoid_height = ellipsoid - geoid
ui8_t nSV; // numSVs used
ui8_t nPRN; // numSVs in in PRN list
} gpsdat_t;
#define BITFRAME_LEN 280
#define XDATA_LEN 26 // (2+4*6)
typedef struct {
int frnr;
int sonde_typ;
ui32_t SN6;
ui32_t SN;
char SN_out[10];
int week; int tow; ui32_t sec_gps;
int jahr; int monat; int tag;
int std; int min; float sek;
double lat; double lon; double alt;
double dir; double horiV; double vertV;
double lat2; double lon2; double alt2;
double dir2; double horiV2; double vertV2;
float T;
float Rf;
float _frmcnt;
float meas24[9];
float status[3];
ui32_t val24[9];
ui8_t cfgchk24[9];
i8_t posmode;
ui8_t xdata[XDATA_LEN]; // 2+4*6
int cfgchk;
char sonde_id[16]; // "ID__:xxxxxxxx\0\0"
char frame_bits[BITFRAME_LEN+4];
char dat_str[9][13+1];
sn_t snc;
pcksts_t pck[9];
option_t option;
int ptu_out;
char sensortyp;
char *dfmtyp;
int jsn_freq; // freq/kHz (SDR)
gpsdat_t gps;
int prev_cntsec_diff;
int prev_manpol;
} gpx_t;
//#define HEADLEN 32
// DFM09: Manchester2: 01->1,10->0
static char dfm_rawheader[] = "10011010100110010101101001010101"; //->"0100010111001111"; // 0x45CF (big endian)
static char dfm_header[] = "0100010111001111";
/* ------------------------------------------------------------------------------------ */
#define BAUD_RATE 2500
/* ------------------------------------------------------------------------------------ */
static int datetime2GPSweek(int yy, int mm, int dd,
int hr, int min, int sec,
int *week, int *tow) {
int ww = 0;
int tt = 0;
int gpsDays = 0;
if ( mm < 3 ) { yy -= 1; mm += 12; }
gpsDays = (int)(365.25*yy) + (int)(30.6001*(mm+1.0)) + dd - 723263; // 1980-01-06
ww = gpsDays / 7;
tt = gpsDays % 7;
tt = tt*86400 + hr*3600 + min*60 + sec;
*week = ww;
*tow = tt;
return 0;
}
/* ------------------------------------------------------------------------------------ */
#define B 8 // codeword: 8 bit
#define S 4 // davon 4 bit data
#define HEAD 0 // 16 bit
#define CONF (16+0) // 56 bit
#define DAT1 (16+56) // 104 bit
#define DAT2 (16+160) // 104 bit
// frame: 280 bit
static ui8_t G[8][4] = // Generator
{{ 1, 0, 0, 0},
{ 0, 1, 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
{ 0, 1, 1, 1},
{ 1, 0, 1, 1},
{ 1, 1, 0, 1},
{ 1, 1, 1, 0}};
static ui8_t H[4][8] = // Parity-Check
{{ 0, 1, 1, 1, 1, 0, 0, 0},
{ 1, 0, 1, 1, 0, 1, 0, 0},
{ 1, 1, 0, 1, 0, 0, 1, 0},
{ 1, 1, 1, 0, 0, 0, 0, 1}};
static ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H:
// 1-bit-error-Syndrome
static ui32_t bits2val(ui8_t *bits, int len) { // big endian
int j;
ui32_t val;
if ((len < 0) || (len > 32)) return -1; // = 0xFFFF
val = 0;
for (j = 0; j < len; j++) {
val |= (bits[j] << (len-1-j));
}
return val;
}
static void deinterleave(char *str, int L, ui8_t *block) {
int i, j;
for (j = 0; j < B; j++) { // L = 7, 13
for (i = 0; i < L; i++) {
if (str[L*j+i] >= 0x30 && str[L*j+i] <= 0x31) {
block[B*i+j] = str[L*j+i] - 0x30; // ASCII -> bit
}
}
}
}
static int check(ui8_t code[8]) {
int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt,
ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser,
ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision.
int ret=0;
for (i = 0; i < 4; i++) { // S = 4
syndrom[i] = 0;
for (j = 0; j < 8; j++) { // B = 8
syndrom[i] ^= H[i][j] & code[j];
}
}
synval = bits2val(syndrom, 4);
if (synval) {
ret = -1;
for (j = 0; j < 8; j++) { // 1-bit-error
if (synval == He[j]) { // reicht auf databits zu pruefen, d.h.
ret = j+1; // (systematischer Code) He[0..3]
break;
}
}
}
else ret = 0;
if (ret > 0) code[ret-1] ^= 0x1;
return ret;
}
static int hamming(int opt_ecc, ui8_t *ham, int L, ui8_t *sym) {
int i, j;
int ecc = 0, ret = 0; // L = 7, 13
for (i = 0; i < L; i++) { // L * 2 nibble (data+parity)
if (opt_ecc) {
ecc = check(ham+B*i);
if (ecc > 0) ret |= (1<<i);
if (ecc < 0) ret |= ecc; // -1
}
for (j = 0; j < S; j++) { // systematic: bits 0..S-1 data
sym[S*i+j] = ham[B*i+j];
}
}
return ret;
}
static char nib2chr(ui8_t nib) {
char c = '_';
if (nib < 0x10) {
if (nib < 0xA) c = 0x30 + nib;
else c = 0x41 + nib-0xA;
}
return c;
}
static int cnt_biterr(int ec) {
int i;
ui8_t ecn = 0;
for (i = 0; i < 15; i++) {
if ( (ec>>i)&1 ) ecn++;
}
return ecn;
}
static int dat_out(gpx_t *gpx, ui8_t *dat_bits, int ec) {
int i, ret = 0;
int fr_id;
// int jahr = 0, monat = 0, tag = 0, std = 0, min = 0;
int frnr = 0;
int msek = 0;
int lat = 0, lon = 0, alt = 0;
int mode = 2;
int nib;
int dvv; // signed/unsigned 16bit
fr_id = bits2val(dat_bits+48, 4);
if (fr_id >= 0 && fr_id <= 8) {
for (i = 0; i < 13; i++) {
nib = bits2val(dat_bits+4*i, 4);
gpx->dat_str[fr_id][i] = nib2chr(nib);
}
gpx->dat_str[fr_id][13] = '\0';
gpx->pck[fr_id].ts = gpx->_frmcnt; // time_stamp,frame_count,...
if (gpx->option.ecc) {
gpx->pck[fr_id].ec = ec; // option_ecc laesst -1 garnicht durch
if (ec > 0) {
ui8_t ecn = cnt_biterr(ec);
gpx->pck[fr_id].ec = ecn;
if ((gpx->option.dst || gpx->option.jsn) && ecn > 4) gpx->pck[fr_id].ec = -2; // threshold: #errors > 4
}
}
}
// GPS data
// SiRF msg ID 41: Geodetic Navigation Data
if (fr_id == 0) {
//start = 0x1000;
mode = bits2val(dat_bits+16, 8);
if (mode > 1 && mode < 5) gpx->posmode = mode;
else gpx->posmode = -1;//2
frnr = bits2val(dat_bits+24, 8);
gpx->frnr = frnr;
}
if (gpx->posmode <= 2)
{
if (fr_id == 0) {
}
if (fr_id == 1) {
// 00..31: GPS-Sats in solution (bitmap)
gpx->gps.prn = bits2val(dat_bits, 32); // SV/PRN bitmask
gpx->gps.nPRN = 0; for (int j = 0; j < 32; j++) { if ((gpx->gps.prn >> j)&1) gpx->gps.nPRN += 1; }
msek = bits2val(dat_bits+32, 16); // UTC (= GPS - 18sec ab 1.1.2017)
gpx->sek = msek/1000.0;
}
if (fr_id == 2) {
lat = bits2val(dat_bits, 32);
gpx->lat = lat/1e7;
dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein
gpx->horiV = dvv/1e2;
}
if (fr_id == 3) {
lon = bits2val(dat_bits, 32);
gpx->lon = lon/1e7;
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
gpx->dir = dvv/1e2;
}
if (fr_id == 4) {
alt = bits2val(dat_bits, 32);
gpx->alt = alt/1e2; // GPS/Ellipsoid
dvv = (short)bits2val(dat_bits+32, 16); // signed
gpx->vertV = dvv/1e2;
}
if (fr_id == 5) {
short dMSL = bits2val(dat_bits, 16);
gpx->gps.dMSL = dMSL/1e2;
}
if (fr_id == 6) { // sat data
}
if (fr_id == 7) { // sat data
}
}
else if (gpx->posmode == 3) // cf. dfm-ts20170801.c
{
if (fr_id == 0) {
msek = bits2val(dat_bits, 16);
gpx->sek = msek/1000.0;
dvv = (short)bits2val(dat_bits+32, 16);
gpx->horiV = dvv/1e2;
}
if (fr_id == 1) {
lat = bits2val(dat_bits, 32);
gpx->lat = lat/1e7;
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
gpx->dir = dvv/1e2;
}
if (fr_id == 2) {
lon = bits2val(dat_bits, 32);
gpx->lon = lon/1e7;
dvv = (short)bits2val(dat_bits+32, 16); // signed
gpx->vertV = dvv/1e2;
}
if (fr_id == 3) {
alt = bits2val(dat_bits, 32);
gpx->alt = alt/1e2; // mode>2: alt/MSL
}
if (fr_id == 5) {
lat = bits2val(dat_bits, 32);
gpx->lat2 = lat/1e7;
dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein
gpx->horiV2 = dvv/1e2;
}
if (fr_id == 6) {
lon = bits2val(dat_bits, 32);
gpx->lon2 = lon/1e7;
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
gpx->dir2 = dvv/1e2;
}
if (fr_id == 7) {
alt = bits2val(dat_bits, 32);
gpx->alt2 = alt/1e2;
dvv = (short)bits2val(dat_bits+32, 16); // signed
gpx->vertV2 = dvv/1e2;
}
}
else if (gpx->posmode == 4) // XDATA: cf. DF9DQ https://github.com/einergehtnochrein/ra-firmware/tree/master/src/dfm
{
if (fr_id == 0) {
msek = bits2val(dat_bits, 16);
gpx->sek = msek/1000.0;
dvv = (short)bits2val(dat_bits+32, 16);
gpx->horiV = dvv/1e2;
}
if (fr_id == 1) {
lat = bits2val(dat_bits, 32);
gpx->lat = lat/1e7;
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
gpx->dir = dvv/1e2;
}
if (fr_id == 2) {
lon = bits2val(dat_bits, 32);
gpx->lon = lon/1e7;
dvv = (short)bits2val(dat_bits+32, 16); // signed
gpx->vertV = dvv/1e2;
}
if (fr_id == 3) {
alt = bits2val(dat_bits, 32);
gpx->alt = alt/1e2; // mode>2: alt/MSL
for (int j = 0; j < 2; j++) gpx->xdata[j] = bits2val(dat_bits+32+8*j, 8);
}
if (fr_id > 3 && fr_id < 8) {
int ofs = fr_id - 4;
for (int j = 0; j < 6; j++) gpx->xdata[2+6*ofs+j] = bits2val(dat_bits+8*j, 8);
}
}
if (fr_id == 8) {
gpx->jahr = bits2val(dat_bits, 12);
gpx->monat = bits2val(dat_bits+12, 4);
gpx->tag = bits2val(dat_bits+16, 5);
gpx->std = bits2val(dat_bits+21, 5);
gpx->min = bits2val(dat_bits+26, 6);
gpx->gps.nSV = bits2val(dat_bits+32, 8);
}
ret = fr_id;
return ret;
}
// DFM-06 (NXP8)
static float fl20(int d) { // float20
int val, p;
float f;
p = (d>>16) & 0xF;
val = d & 0xFFFF;
f = val/(float)(1<<p);
return f;
}
/*
static float flo20(int d) {
int m, e;
float f1, f;
m = d & 0xFFFF;
e = (d >> 16) & 0xF;
f = m / pow(2,e);
return f;
}
*/
// DFM-09 (STM32)
static float fl24(int d) { // float24
int val, p;
float f;
p = (d>>20) & 0xF;
val = d & 0xFFFFF;
f = val/(float)(1<<p);
return f;
}
// temperature approximation
static float get_Temp(gpx_t *gpx) { // meas[0..4]
// NTC-Thermistor EPCOS B57540G0502
// R/T No 8402, R25=Ro=5k
// B0/100=3450
// 1/T = 1/To + 1/B log(r) , r=R/Ro
// GRAW calibration data -80C..+40C on EEPROM ?
// meas0 = g*(R + Rs)
// meas3 = g*Rs , Rs: dfm6:10k, dfm9:20k
// meas4 = g*Rf , Rf=220k
float T = 0; // T/Kelvin
float f = gpx->meas24[0],
f1 = gpx->meas24[3],
f2 = gpx->meas24[4];
if (gpx->sensortyp == 'P') // 0xC: "P+" DFM-09P , "T-" DFM-17TU ; 0xD: "P-" DFM-17P ?
{ // 0x8: "P-" (gpx->sonde_id[3] == '8') DFM-6/9P ?
f = gpx->meas24[0+1];
f1 = gpx->meas24[3+2];
f2 = gpx->meas24[4+2];
}
if (gpx->cfgchk) {
//float *meas = gpx->meas24;
float B0 = 3260.0; // B/Kelvin, fit -55C..+40C
float T0 = 25 + 273.15; // t0=25C
float R0 = 5.0e3; // R0=R25=5k
float Rf = gpx->Rf; // Rf = DFM09:220k , DFM17:332k
float g = f2/Rf;
float R = (f-f1) / g; // meas[0,3,4] > 0 ?
if (f*f1*f2 == 0) R = 0;
if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0));
}
return T - 273.15; // Celsius
// DFM-06: meas20 * 16 = meas24
// -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4]
}
static float get_Temp2(gpx_t *gpx) { // meas[0..4]
// NTC-Thermistor EPCOS B57540G0502
// R/T No 8402, R25=Ro=5k
// B0/100=3450
// 1/T = 1/To + 1/B log(r) , r=R/Ro
// GRAW calibration data -80C..+40C on EEPROM ?
// meas0 = g*(R+Rs)+ofs
// meas3 = g*Rs+ofs , Rs: dfm6:10k, dfm9:20k
// meas4 = g*Rf+ofs , Rf=220k
float f = gpx->meas24[0],
f1 = gpx->meas24[3],
f2 = gpx->meas24[4];
if (gpx->ptu_out >= 0xC && gpx->meas24[6] < 220e3 || gpx->sonde_id[3] == '8') {
f = gpx->meas24[0+1];
f1 = gpx->meas24[3+2];
f2 = gpx->meas24[4+2];
}
float B0 = 3260.0; // B/Kelvin, fit -55C..+40C
float T0 = 25 + 273.15; // t0=25C
float R0 = 5.0e3; // R0=R25=5k
float Rf2 = 220e3; // Rf2 = Rf = DFM09:220k , DFM17:332k
float g_o = f2/Rf2; // approx gain
float Rs_o = f1/g_o; // = Rf2 * f1/f2;
float Rf1 = Rs_o; // Rf1 = Rs: dfm6:10k, dfm9:20k
float g = g_o; // gain
float Rb = 0.0; // offset
float R = 0; // thermistor
float T = 0; // T/Kelvin
// ptu_out=0xD: Rs_o=13.6, Rf2=?
if ( 8e3 < Rs_o && Rs_o < 12e3) Rf1 = 10e3; // dfm6
else if (18e3 < Rs_o && Rs_o < 22e3) Rf1 = 20e3; // dfm9
g = (f2 - f1) / (Rf2 - Rf1);
Rb = (f1*Rf2-f2*Rf1)/(f2-f1); // ofs/g
R = (f-f1)/g; // meas[0,3,4] > 0 ?
if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0));
if (gpx->option.ptu && gpx->ptu_out && gpx->option.dbg && gpx->option.vbs == 3) {
printf(" (Rso: %.1f , Rb: %.1f)", Rs_o/1e3, Rb/1e3);
}
return T - 273.15;
// DFM-06: meas20 * 16 = meas24
}
static float get_Temp4(gpx_t *gpx) { // meas[0..4]
// NTC-Thermistor EPCOS B57540G0502
// [ T/C , R/R25 , alpha ] :
// [ -55.0 , 51.991 , 6.4 ]
// [ -50.0 , 37.989 , 6.2 ]
// [ -45.0 , 28.07 , 5.9 ]
// [ -40.0 , 20.96 , 5.7 ]
// [ -35.0 , 15.809 , 5.5 ]
// [ -30.0 , 12.037 , 5.4 ]
// [ -25.0 , 9.2484 , 5.2 ]
// [ -20.0 , 7.1668 , 5.0 ]
// [ -15.0 , 5.5993 , 4.9 ]
// [ -10.0 , 4.4087 , 4.7 ]
// [ -5.0 , 3.4971 , 4.6 ]
// [ 0.0 , 2.7936 , 4.4 ]
// [ 5.0 , 2.2468 , 4.3 ]
// [ 10.0 , 1.8187 , 4.2 ]
// [ 15.0 , 1.4813 , 4.0 ]
// [ 20.0 , 1.2136 , 3.9 ]
// [ 25.0 , 1.0000 , 3.8 ]
// [ 30.0 , 0.82845 , 3.7 ]
// [ 35.0 , 0.68991 , 3.6 ]
// [ 40.0 , 0.57742 , 3.5 ]
// -> Steinhart-Hart coefficients (polyfit):
float p0 = 1.09698417e-03,
p1 = 2.39564629e-04,
p2 = 2.48821437e-06,
p3 = 5.84354921e-08;
// T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 )
float f = gpx->meas24[0],
f1 = gpx->meas24[3],
f2 = gpx->meas24[4];
if (gpx->ptu_out >= 0xC && gpx->meas24[6] < 220e3 || gpx->sonde_id[3] == '8') {
f = gpx->meas24[0+1];
f1 = gpx->meas24[3+2];
f2 = gpx->meas24[4+2];
}
//float *meas = gpx->meas24;
float Rf = 220e3; // Rf = DFM09:220k , DFM17:332k
float g = f2/Rf;
float R = (f-f1) / g; // f,f1,f2 > 0 ?
float T = 0; // T/Kelvin
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
return T - 273.15; // Celsius
// DFM-06: meas20 * 16 = meas24
// -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4]
}
static int reset_cfgchk(gpx_t *gpx) {
int j;
for (j = 0; j < 9; j++) gpx->cfgchk24[j] = 0;
gpx->cfgchk = 0;
gpx->ptu_out = 0;
//gpx->gps.dMSL = 0;
*gpx->SN_out = '\0';
gpx->T = -273.15f;
return 0;
}
#define SNbit 0x0100
static int conf_out(gpx_t *gpx, ui8_t *conf_bits, int ec) {
int ret = 0;
int val;
ui8_t conf_id;
ui8_t hl;
ui32_t SN6, SN;
ui8_t dfm6typ;
ui8_t sn2_ch, sn_ch;
conf_id = bits2val(conf_bits, 4);
if (conf_id > 4 && bits2val(conf_bits+8, 4*5) == 0) gpx->snc.nul_ch = bits2val(conf_bits, 8);
dfm6typ = ((gpx->snc.nul_ch & 0xF0)==0x50) && (gpx->snc.nul_ch & 0x0F);
if (dfm6typ) gpx->ptu_out = 6;
if (dfm6typ && (gpx->sonde_typ & 0xF) > 6)
{ // reset if 0x5A, 0x5B (DFM-06)
gpx->sonde_typ = 0;
gpx->snc.max_ch = conf_id;
reset_cfgchk(gpx);
}
if (conf_id > 5 && conf_id > gpx->snc.max_ch && ec == 0) { // mind. 6 Kanaele
if (bits2val(conf_bits+4, 4) == 0xC) { // 0xsCaaaab
gpx->snc.max_ch = conf_id; // reset?
}
/*
if (bits2val(conf_bits, 8) == 0x70) { // 0x70aaaab
gpx->snc.max_ch = conf_id; // reset?
}
*/
}
// SN: mind. 6 Kanaele
if (conf_id > 5 && (conf_id == (gpx->snc.nul_ch>>4)+1 || conf_id == gpx->snc.max_ch))
{
sn2_ch = bits2val(conf_bits, 8);
sn_ch = ((sn2_ch>>4) & 0xF); // sn_ch == config_id
if ( (gpx->snc.nul_ch & 0x58) == 0x58 ) { // 0x5A, 0x5B or 0x7A, 0x7B
SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6 DFM-06P: Kanal 8 (DFM-6/9P)
if (SN6 == gpx->SN6 && SN6 != 0) { // nur Nibble-Werte 0..9
gpx->sonde_typ = SNbit | sn_ch; //6 or 8
gpx->ptu_out = 6; // <-> DFM-06
// (test SN6 for BCD (binary coded decimal) ?)
//sprintf(gpx->sonde_id, "IDx%1X:%6X", gpx->sonde_typ & 0xF, gpx->SN6);
sprintf(gpx->sonde_id, "IDx%1X:%6X", sn_ch & 0xF, gpx->SN6);
sprintf(gpx->SN_out, "%6X", gpx->SN6);
}
else { // reset
gpx->sonde_typ = 0;
reset_cfgchk(gpx);
}
gpx->SN6 = SN6;
} // SN in last pck/channel, #{pcks} depends on (sensor) config; observed:
else if ( (sn2_ch & 0xF) == 0xC // 0xsCaaaab, s==sn_ch , s: 0xA=DFM-09 , 0xC=DFM-09P , 0xB=DFM-17 , 0xD=DFM-17P?
|| (sn2_ch & 0xF) == 0x0 ) // 0xs0aaaab, s==sn_ch , s: 0x7,0x8: pilotsonde PS-15?
{
val = bits2val(conf_bits+8, 4*5);
hl = (val & 0xF);
if (hl < 2)
{
if ( gpx->snc.sn_ch != sn_ch ) { // -> sn_ch > 0
// reset
gpx->snc.chXbit = 0;
gpx->snc.chX[0] = 0;
gpx->snc.chX[1] = 0;
reset_cfgchk(gpx);
}
gpx->snc.sn_ch = sn_ch;
gpx->snc.chX[hl] = (val >> 4) & 0xFFFF;
gpx->snc.chXbit |= 1 << hl;
if (gpx->snc.chXbit == 3) {
SN = (gpx->snc.chX[0] << 16) | gpx->snc.chX[1];
if ( SN == gpx->snc.SN_X || gpx->snc.SN_X == 0 ) {
gpx->sonde_typ = SNbit | sn_ch;
gpx->SN = SN;
gpx->ptu_out = 0;
if (sn_ch == 0xA /*&& (sn2_ch & 0xF) == 0xC*/) gpx->ptu_out = sn_ch; // <+> DFM-09
if (sn_ch == 0xB /*&& (sn2_ch & 0xF) == 0xC*/) gpx->ptu_out = sn_ch; // <-> DFM-17
if (sn_ch == 0xC) gpx->ptu_out = sn_ch; // <+> DFM-09P(?) , <-> DFM-17TU(?)
if (sn_ch == 0xD) gpx->ptu_out = sn_ch; // <-> DFM-17P(?)
// PS-15 ? (sn2_ch & 0xF) == 0x0 : gpx->ptu_out = 0 // <-> PS-15
if ( gpx->SN6 == 0 || (gpx->sonde_typ & 0xF) >= 0xA) {
sprintf(gpx->sonde_id, "IDx%1X:%6u", gpx->sonde_typ & 0xF, gpx->SN);
sprintf(gpx->SN_out, "%6u", gpx->SN);
}
}
else { // reset
gpx->sonde_typ = 0;
reset_cfgchk(gpx);
}
gpx->snc.SN_X = SN;
gpx->snc.chXbit = 0;
}
}
}
ret = (gpx->sonde_typ & 0xF);
}
if (conf_id >= 0 && conf_id <= 8 && ec == 0) {
gpx->cfgchk24[conf_id] = 1;
val = bits2val(conf_bits+4, 4*6);
gpx->val24[conf_id] = val;
gpx->meas24[conf_id] = fl24(val); //0xA: 0..4
// DFM-09 (STM32): 24bit 0exxxxx
// DFM-06 (NXP8): 20bit 0exxxx0
// fl20(bits2val(conf_bits+4, 4*5))
// = fl20(exxxx)
// = fl24(exxxx0)/2^4
// meas20 * 16 = meas24
gpx->cfgchk = 0;
if (gpx->ptu_out >= 0x5) gpx->cfgchk = gpx->cfgchk24[0]*gpx->cfgchk24[1]*gpx->cfgchk24[2]
*gpx->cfgchk24[3]*gpx->cfgchk24[4]*gpx->cfgchk24[5];
if (gpx->ptu_out >= 0x7) gpx->cfgchk *= gpx->cfgchk24[6]*gpx->cfgchk24[7];
if (gpx->ptu_out >= 0x8) gpx->cfgchk *= gpx->cfgchk24[8];
}
gpx->sensortyp = 'T';
gpx->Rf = 220e3;
if (gpx->cfgchk)
{ // 0xC: "P+" DFM-09P , "T-" DFM-17TU ; 0xD: "P-" DFM-17P ?
if (gpx->ptu_out >= 0xD || (gpx->ptu_out >= 0xC && gpx->meas24[6] < 220e3)) { // gpx->meas24[6] < 220e3 <=> gpx->meas24[0] > 2e5 ?
gpx->sensortyp = 'P'; // gpx->meas24[0] > 2e5 ?
}
if ( ((gpx->ptu_out == 0xB || gpx->ptu_out == 0xC) && gpx->sensortyp == 'T') || gpx->ptu_out >= 0xD) gpx->Rf = 332e3; // DFM-17 ?
if (gpx->ptu_out == 6 && (gpx->sonde_typ & 0xF) == 8) {
gpx->sensortyp = 'P';
}
// STM32-status: Bat, MCU-Temp
if (gpx->ptu_out >= 0xA) { // DFM>=09(P) (STM32)
ui8_t ofs = 0;
if (gpx->sensortyp == 'P') ofs = 2;
//
// c0xxxx0 inner 16 bit
if (conf_id == 0x5+ofs) { // voltage
val = bits2val(conf_bits+8, 4*4);
gpx->status[0] = val/1000.0;
}
if (conf_id == 0x6+ofs) { // T-intern (STM32)
val = bits2val(conf_bits+8, 4*4);
gpx->status[1] = val/100.0;
}
if (conf_id == 0x7+ofs && gpx->Rf > 300e3) { // DFM17 counter
val = bits2val(conf_bits+8, 4*4);
gpx->status[2] = val/1.0; // sec counter
}
}
else {
gpx->status[0] = 0;
gpx->status[1] = 0;
gpx->status[2] = 0;
}
}
/* guess DFM type
V/Ti Tf012 Rf
0xA DFM-09 5/6 0,3,4 'T+' 220k
0xC DFM-09P 7/8 1,5,6 'P+' 220k
0xB DFM-17 5/6 0,3,4 'T-' 332k
0xC DFM-17TU 5/6 0,3,4 'T-' 332k
0xD DFM-17P 7/8 1,5,6 'P-' 332k
*/
gpx->dfmtyp = DFM_types[UNDEF];
switch (gpx->sonde_typ & 0xF) {
case 0x6: gpx->dfmtyp = DFM_types[DFM06];
break;
case 0x7:
case 0x8: if (gpx->SN6) gpx->dfmtyp = DFM_types[DFM06P]; //gpx->sensortyp == 'P'
else gpx->dfmtyp = DFM_types[PS15];
break;
case 0xA: gpx->dfmtyp = DFM_types[DFM09];
break;
case 0xB: gpx->dfmtyp = DFM_types[DFM17];
break;
case 0xC: if (gpx->sensortyp == 'P') gpx->dfmtyp = DFM_types[DFM09P];
else /*'T'*/ gpx->dfmtyp = DFM_types[DFM17];
break;
case 0xD: gpx->dfmtyp = DFM_types[DFM17P];
break;
default: gpx->dfmtyp = DFM_types[UNKNW];
break;
}
return ret;
}
static int print_gpx(gpx_t *gpx) {
int i, j;
int contgps = 0;
int contaux = 0;
int output = 0;
int jsonout = 0;
int start = 0;
int repeat_gps = 0;
int ret = 0;
if (gpx->frnr > 0) start = 0x1000;
output |= start;
for (i = 0; i < 9/*8*/; i++) { // trigger: pck8
if ( !( (gpx->option.dst || gpx->option.jsn) && gpx->pck[i].ec < 0) )
{
if (gpx->pck[8].ts - gpx->pck[i].ts < 6.0) { output |= (1<<i); }
}
//if (gpx->option.dst && gpx->pck[i].ec < 0) { output &= ~(1<<i); }
}
jsonout = output;
contgps = ((output & 0x11F) == 0x11F); // 0,1,2,3,4,8 (incl. xdata ID=0x01)
if (gpx->posmode == 4) { // xdata
contaux = ((output & 0xF8) == 0xF8); // 3,4,5,6,7
}
if (gpx->option.dst && !contgps) {
output = 0;
}
if (gpx->option.jsn && !contgps) {
jsonout = 0;
}
if (!gpx->option.raw || gpx->option.jsn) {
// seconds since GPS (ignoring leap seconds, DFM=UTC)
datetime2GPSweek(gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, (int)(gpx->sek+0.5), &(gpx->week), &(gpx->tow));
gpx->sec_gps = gpx->week*604800 + gpx->tow; // SECONDS_IN_WEEK=7*86400=604800
if (contgps) {
ui8_t secmod256 = (ui8_t)gpx->sec_gps; // % 256
int cntsec_diff = secmod256 - gpx->frnr;
if (cntsec_diff < 0) cntsec_diff += 256;
// DFM06: cntsec_diff might drift slowly (30sec sync), but recovers faster
// DFM09: delta(diff)=1 could indicate decoding error
if (gpx->option.jsn && (cntsec_diff != gpx->prev_cntsec_diff || gpx->option.inv != gpx->prev_manpol)) {
// initial state not relevant
jsonout = 0;
gpx->sonde_typ = 0;
reset_cfgchk(gpx);
}
gpx->prev_cntsec_diff = cntsec_diff;
gpx->prev_manpol = gpx->option.inv;
}
gpx->T = -273.15f;
if (gpx->cfgchk && gpx->ptu_out)
{
gpx->T = get_Temp(gpx);
if (gpx->T < -270.0f && gpx->dfmtyp != DFM_types[UNDEF]) {
if ((gpx->sonde_typ & 0xF) == 0x8 || (gpx->sonde_typ & 0xF) == 0xC)
{
gpx->dfmtyp = DFM_types[UNKNW];
}
}
}
}
if (output & 0xF000) {
if (gpx->option.raw == 2) {
for (i = 0; i < 9; i++) {
printf(" %s", gpx->dat_str[i]);
if (gpx->option.ecc) printf(" (%1X) ", gpx->pck[i].ec&0xF);
}
for (i = 0; i < 9; i++) {
for (j = 0; j < 13; j++) gpx->dat_str[i][j] = ' ';
}
printf("\n");
}
else if (!gpx->option.raw) {
if (gpx->option.aut && gpx->option.vbs >= 2) printf("<%c> ", gpx->option.inv?'-':'+');
printf("[%3d] ", gpx->frnr);
printf("%4d-%02d-%02d ", gpx->jahr, gpx->monat, gpx->tag);
printf("%02d:%02d:%04.1f ", gpx->std, gpx->min, gpx->sek);
if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X,%1X,%1X) ", gpx->pck[0].ec&0xF, gpx->pck[8].ec&0xF, gpx->pck[1].ec&0xF);
printf(" ");
printf(" lat: %.5f ", gpx->lat); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X) ", gpx->pck[2].ec&0xF);
printf(" lon: %.5f ", gpx->lon); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X) ", gpx->pck[3].ec&0xF);
printf(" alt: %.1f ", gpx->alt); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X) ", gpx->pck[4].ec&0xF);
printf(" vH: %5.2f ", gpx->horiV);
printf(" D: %5.1f ", gpx->dir);
printf(" vV: %5.2f ", gpx->vertV);
if (gpx->cfgchk)
{
if (gpx->option.ptu && gpx->ptu_out) {
//float t = get_Temp(gpx);
if (gpx->T > -270.0f) {
printf(" T=%.1fC ", gpx->T); // 0xC:P+ DFM-09P , 0xC:T- DFM-17TU , 0xD:P- DFM-17P ?
if (gpx->option.vbs == 3) printf(" (0x%X:%c%c) ", gpx->sonde_typ & 0xF, gpx->sensortyp, gpx->option.inv?'-':'+');
}
if (gpx->option.dbg) {
float t2 = get_Temp2(gpx);
float t4 = get_Temp4(gpx);
if (t2 > -270.0f) printf(" T2=%.1fC ", t2);
if (t4 > -270.0f) printf(" T4=%.1fC ", t4);
}
}
if (gpx->option.vbs == 3 && gpx->ptu_out >= 0xA) {
if (gpx->status[0]> 0.0) printf(" U: %.2fV ", gpx->status[0]);
if (gpx->status[1]> 0.0) printf(" Ti: %.1fK ", gpx->status[1]);
if (gpx->status[2]> 0.0) printf(" sec: %.0f ", gpx->status[2]);
}
}
if (gpx->option.dbg) {
printf(" f0:%.1f", gpx->meas24[0]);
printf(" f1:%.1f", gpx->meas24[1]);
printf(" f2:%.1f", gpx->meas24[2]);
printf(" f3:%.1f", gpx->meas24[3]);
printf(" f4:%.1f", gpx->meas24[4]);
if (gpx->ptu_out >= 0xA /*0xC*/ || gpx->sonde_id[3] == '8') {
printf(" f5:%.1f", gpx->meas24[5]);
printf(" f6:%.1f", gpx->meas24[6]);
}
printf(" ");
}
if (gpx->option.vbs)
{
if (gpx->sonde_typ & SNbit) {
printf(" (%s", gpx->sonde_id);
if (gpx->option.vbs > 1 && *gpx->dfmtyp) printf(":%s", gpx->dfmtyp);
printf(") ");
gpx->sonde_typ ^= SNbit;
}
}
printf("\n");
if (gpx->posmode > 2) {
//printf(" ");
//printf("(mode:%d) ", gpx->posmode);
if (gpx->posmode == 3 && repeat_gps) {
printf(" ");
printf("(mode:%d) ", gpx->posmode);
printf(" lat: %.5f ", gpx->lat2);
printf(" lon: %.5f ", gpx->lon2);
printf(" alt: %.1f ", gpx->alt2);
printf(" vH: %5.2f ", gpx->horiV2);
printf(" D: %5.1f ", gpx->dir2);
printf(" vV: %5.2f ", gpx->vertV2);
printf("\n");
}
if (gpx->posmode == 4 && gpx->option.aux) {
printf(" ");
//printf("(mode:%d) ", gpx->posmode);
printf("XDATA:");
for (j = 0; j < 2; j++) printf(" %02X", gpx->xdata[j]);
for (j = 2; j < XDATA_LEN; j++) printf(" %02X", gpx->xdata[j]);
printf("\n");
if (gpx->xdata[0] == 0x01)
{ // ECC Ozonesonde 01 .. .. (MSB)
ui8_t InstrumentNum = gpx->xdata[1];
ui16_t Icell = gpx->xdata[2+1] | (gpx->xdata[2]<<8); // MSB
i16_t Tpump = gpx->xdata[4+1] | (gpx->xdata[4]<<8); // MSB
ui8_t Ipump = gpx->xdata[6];
ui8_t Vbat = gpx->xdata[7];
printf(" ");
printf(" ID=0x01 ECC ");
printf(" Icell:%.3fuA ", Icell/1000.0);
printf(" Tpump:%.2fC ", Tpump/100.0);
printf(" Ipump:%dmA ", Ipump);
printf(" Vbat:%.1fV ", Vbat/10.0);
printf("\n");
}
}
}
if (gpx->option.sat && gpx->posmode <= 2) {
printf(" ");
printf(" dMSL: %+.2f", gpx->gps.dMSL); // MSL = alt + gps.dMSL
printf(" sats: %d", gpx->gps.nSV);
printf(" (");
for (j = 0; j < 32; j++) { if ((gpx->gps.prn >> j)&1) printf(" %02d", j+1); }
printf(" nPRN: %d", gpx->gps.nPRN);
printf(" )");
printf("\n");
}
}
if (gpx->option.jsn && jsonout && gpx->sek < 60.0)
{
char json_sonde_id[] = "DFM-xxxxxxxx\0\0"; // default (dfmXtyp==0)
ui8_t dfmXtyp = (gpx->sonde_typ & 0xF);
if (*gpx->SN_out) strncpy(json_sonde_id+4, gpx->SN_out, 9);
// JSON frame counter: gpx->sec_gps , seconds since GPS (ignoring leap seconds, DFM=UTC)
int _sats = gpx->gps.nSV;
if (_sats == 0 /*&& sonde_type == 6*/) _sats = gpx->gps.nPRN;
// Print JSON blob // valid sonde_ID?
printf("{ \"type\": \"%s\"", "DFM");
printf(", \"frame\": %u, ", gpx->sec_gps); // gpx->frnr
printf("\"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f, \"sats\": %d",
json_sonde_id, gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt, gpx->horiV, gpx->dir, gpx->vertV, _sats);
if (gpx->ptu_out >= 0xA && gpx->status[0] > 0) { // DFM>=09(P): Battery (STM32)
printf(", \"batt\": %.2f", gpx->status[0]);
}
if (gpx->ptu_out) { // get temperature
//float t = get_Temp(gpx); // ecc-valid temperature?
if (gpx->T > -270.0f) printf(", \"temp\": %.1f", gpx->T);
}
if (gpx->posmode == 4 && contaux && gpx->xdata[0]) {
char xdata_str[2*XDATA_LEN+1];
memset(xdata_str, 0, 2*XDATA_LEN+1);
for (j = 0; j < XDATA_LEN; j++) {
sprintf(xdata_str+2*j, "%02X", gpx->xdata[j]);
}
printf(", \"aux\": \"%s\"", xdata_str);
}
//if (dfmXtyp > 0) printf(", \"subtype\": \"0x%1X\"", dfmXtyp);
if (dfmXtyp > 0) {
printf(", \"subtype\": \"0x%1X", dfmXtyp);
if (*gpx->dfmtyp) printf(":%s", gpx->dfmtyp);
printf("\"");
}
if (gpx->jsn_freq > 0) {
printf(", \"freq\": %d", gpx->jsn_freq);
}
// Reference time/position
printf(", \"ref_datetime\": \"%s\"", "UTC" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
if (gpx->posmode <= 2) { // mode 2
printf(", \"ref_position\": \"%s\"", "GPS" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
printf(", \"diff_GPS_MSL\": %.2f", -gpx->gps.dMSL ); // MSL = GPS + gps.dMSL
}
else printf(", \"ref_position\": \"%s\"", "MSL" ); // mode 3,4
printf(" }\n");
printf("\n");
}
ret = 1;
}
for (i = 0; i < 9; i++) gpx->pck[i].ec = -1;
return ret;
}
static int print_frame(gpx_t *gpx, dsp_t *dsp) {
int i;
int nib = 0;
int frid = -1;
int ret0, ret1, ret2;
int ret = 0;
ui8_t hamming_conf[ 7*B]; // 7*8=56
ui8_t hamming_dat1[13*B]; // 13*8=104
ui8_t hamming_dat2[13*B];
ui8_t block_conf[ 7*S]; // 7*4=28
ui8_t block_dat1[13*S]; // 13*4=52
ui8_t block_dat2[13*S];
deinterleave(gpx->frame_bits+CONF, 7, hamming_conf);
deinterleave(gpx->frame_bits+DAT1, 13, hamming_dat1);
deinterleave(gpx->frame_bits+DAT2, 13, hamming_dat2);
ret0 = hamming(gpx->option.ecc, hamming_conf, 7, block_conf);
ret1 = hamming(gpx->option.ecc, hamming_dat1, 13, block_dat1);
ret2 = hamming(gpx->option.ecc, hamming_dat2, 13, block_dat2);
ret = ret0 | ret1 | ret2;
if (gpx->option.raw == 1) {
for (i = 0; i < 7; i++) {
nib = bits2val(block_conf+S*i, S);
printf("%01X", nib & 0xFF);
}
if (gpx->option.ecc) {
if (ret0 == 0) printf(" [OK] ");
else if (ret0 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf(" ");
for (i = 0; i < 13; i++) {
nib = bits2val(block_dat1+S*i, S);
printf("%01X", nib & 0xFF);
}
if (gpx->option.ecc) {
if (ret1 == 0) printf(" [OK] ");
else if (ret1 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf(" ");
for (i = 0; i < 13; i++) {
nib = bits2val(block_dat2+S*i, S);
printf("%01X", nib & 0xFF);
}
if (gpx->option.ecc) {
if (ret2 == 0) printf(" [OK] ");
else if (ret2 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
if (gpx->option.ecc && gpx->option.vbs) {
if (gpx->option.vbs > 1) printf(" (%1X,%1X,%1X) ", cnt_biterr(ret0), cnt_biterr(ret1), cnt_biterr(ret2));
printf(" (%d) ", cnt_biterr(ret0)+cnt_biterr(ret1)+cnt_biterr(ret2));
}
printf("\n");
}
else if (gpx->option.ecc) {
if (ret0 == 0 || ret0 > 0) {
conf_out(gpx, block_conf, ret0);
}
if (ret1 == 0 || ret1 > 0) {
frid = dat_out(gpx, block_dat1, ret1);
if (frid == 8) {
pthread_mutex_lock( dsp->thd->mutex );
fprintf(stdout, "<%d> ", dsp->thd->tn);
ret1 = print_gpx(gpx);
if (ret1==0) fprintf(stdout, "\n");
pthread_mutex_unlock( dsp->thd->mutex );
}
}
if (ret2 == 0 || ret2 > 0) {
frid = dat_out(gpx, block_dat2, ret2);
if (frid == 8) {
pthread_mutex_lock( dsp->thd->mutex );
//fprintf(stdout, "<%d> ", dsp->thd->tn);
fprintf(stdout, "<%d: ", dsp->thd->tn);
fprintf(stdout, "s=%+.4f, ", dsp->mv);
fprintf(stdout, "f=%+.4f", -dsp->thd->xlt_fq);
if (dsp->opt_dc) fprintf(stdout, "%+.6f", dsp->Df/(double)dsp->sr);
fprintf(stdout, "> ");
ret2 = print_gpx(gpx);
if (ret2==0) fprintf(stdout, "\n");
pthread_mutex_unlock( dsp->thd->mutex );
}
}
}
else {
conf_out(gpx, block_conf, ret0);
frid = dat_out(gpx, block_dat1, ret1);
if (frid == 8) print_gpx(gpx);
frid = dat_out(gpx, block_dat2, ret2);
if (frid == 8) print_gpx(gpx);
}
return ret;
}
/* -------------------------------------------------------------------------- */
void *thd_dfm09(void *targs) {
thargs_t *tharg = targs;
pcm_t *pcm = &(tharg->pcm);
int option_iq = 5;
int spike = 0;
int ret = 0;
int k;
int bit;
int bitpos = 0;
int bitQ = 0;
int pos;
int frm = 0, nfrms = 8; // nfrms=1,2,4,8
int headerlen = 0;
int header_found = 0;
float thres = 0.65;
float _mv = 0.0;
int symlen = 2;
int bitofs = 2; // +1 .. +2
int shift = 0;
dsp_t dsp = {0};
gpx_t gpx = {0};
/*
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
*/
// init gpx
strcpy(gpx.frame_bits, dfm_header); //, sizeof(dfm_header);
for (k = 0; k < 9; k++) gpx.pck[k].ec = -1; // init ecc-status
gpx.option.vbs = 2;
gpx.option.ptu = 1;
gpx.option.ecc = 1;
gpx.option.aut = 1;
gpx.option.dst = 0;
gpx.option.jsn = tharg->option_jsn;
gpx.jsn_freq = tharg->jsn_freq;
headerlen = strlen(dfm_rawheader);
pcm->sel_ch = 0;
// dfm: BT=1?, h=2.4?
symlen = 2;
// init dsp
//
dsp.fp = pcm->fp;
dsp.sr = pcm->sr;
dsp.sr_base = pcm->sr_base;
dsp.dectaps = pcm->dectaps;
dsp.decM = pcm->decM;
dsp.thd = &(tharg->thd);
dsp.bps = pcm->bps;
dsp.nch = pcm->nch;
dsp.ch = pcm->sel_ch;
dsp.br = (float)BAUD_RATE;
dsp.sps = (float)dsp.sr/dsp.br;
dsp.symlen = symlen;
dsp.symhd = symlen;
dsp._spb = dsp.sps*symlen;
dsp.hdr = dfm_rawheader;
dsp.hdrlen = strlen(dfm_rawheader);
dsp.BT = 0.5; // bw/time (ISI) // 0.3..0.5
dsp.h = 1.8; // 2.4 modulation index abzgl. BT
dsp.opt_iq = option_iq;
dsp.opt_lp = 1;
dsp.lpIQ_bw = 12e3; // IF lowpass bandwidth
dsp.lpFM_bw = 4e3; // FM audio lowpass
dsp.opt_dc = tharg->option_dc;
dsp.opt_cnt = tharg->option_cnt;
if ( dsp.sps < 8 ) {
//fprintf(stderr, "note: sample rate low\n");
}
k = init_buffers(&dsp);
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");
goto exit_thread;
};
bitofs += shift;
bitQ = 0;
while ( 1 && bitQ != EOF )
{
header_found = find_header(&dsp, thres, 2, bitofs, dsp.opt_dc);
_mv = dsp.mv;
if (header_found == EOF) break;
// mv == correlation score
if (_mv *(0.5-gpx.option.inv) < 0) {
if (gpx.option.aut == 0) header_found = 0;
else gpx.option.inv ^= 0x1;
}
if (header_found)
{
bitpos = 0;
pos = headerlen;
pos /= 2;
//if (fabs(mv) > 0.85) nfrms = 8; else nfrms = 4; // test OK/KO/NO count
frm = 0;
while ( frm < nfrms ) { // nfrms=1,2,4,8
gpx._frmcnt = dsp.mv_pos/(2.0*dsp.sps*BITFRAME_LEN) + frm;
while ( pos < BITFRAME_LEN )
{
if (option_iq >= 2) {
float bl = -1;
if (option_iq > 2) bl = 4.0;
bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, bl, 0);
}
else {
bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, -1, spike);
}
if ( bitQ == EOF ) { frm = nfrms; break; } // liest 2x EOF
if (gpx.option.inv) bit ^= 1;
gpx.frame_bits[pos] = 0x30 + bit;
pos++;
bitpos += 1;
}
gpx.frame_bits[pos] = '\0';
ret = print_frame(&gpx, &dsp);
if (pos < BITFRAME_LEN) break;
pos = 0;
frm += 1;
//if (ret < 0) frms += 1;
}
}
header_found = 0;
pos = headerlen;
}
free_buffers(&dsp);
exit_thread:
reset_blockread(&dsp);
(dsp.thd)->used = 0;
return NULL;
}