RS-tracker/demod/mod/imet54mod.c

1077 wiersze
32 KiB
C

/*
* imet-54
* sync header: correlation/matched filter
* files: imet54mod.c demod_mod.h demod_mod.c
* compile:
* gcc -c demod_mod.c
* gcc imet54mod.c demod_mod.o -lm -o imet54mod
*
* author: zilog80
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
// optional JSON "version"
// (a) set global
// gcc -DVERSION_JSN [-I<inc_dir>] ...
#ifdef VERSION_JSN
#include "version_jsn.h"
#endif
// or
// (b) set local compiler option, e.g.
// gcc -DVER_JSN_STR=\"0.0.2\" ...
//typedef unsigned char ui8_t;
//typedef unsigned short ui16_t;
//typedef unsigned int ui32_t;
//typedef short i16_t;
//typedef int i32_t;
#include "demod_mod.h"
typedef struct {
i8_t vbs; // verbose output
i8_t raw; // raw frames
i8_t crc;
i8_t ecc; // Hamming ECC
i8_t sat; // GPS sat data
i8_t ptu; // PTU: temperature humidity (pressure)
i8_t inv;
i8_t aut;
i8_t jsn; // JSON output (auto_rx)
i8_t slt; // silent
} option_t;
#define BITS (10)
#define STDFRMLEN (220) // 108 byte
#define FRAME_LEN (220) //(std=220, 108 byte) (full=440=2*std, 216 byte)
#define BITFRAME_LEN (FRAME_LEN*BITS)
#define FRMBYTE_STD (108) //(FRAME_LEN-FRAMESTART)/2 = 108
// FRAME_FULL = 2*FRAME_STD = 216 ?
typedef struct {
int out;
int frnr;
//char id[9];
ui32_t SNu32;
int week; int timems; int gpssec;
int std; int min; float sek;
double lat; double lon; double alt;
double vH; double vD; double vV;
float T; float _RH; float Trh; float RH;
ui16_t status;
ui8_t frame[FRAME_LEN+4];
ui8_t frame_bits[BITFRAME_LEN+8];
int jsn_freq; // freq/kHz (SDR)
option_t option;
} gpx_t;
#define HEADLEN 40
#define FRAMESTART ((HEADLEN)/BITS)
// header = preamble + sync: 8N1 , 10x 0x00 0xAA + 4x 0x24
// shorter header correlation, such that, in mixed signal/noise,
// signal samples have more weight: header = 0x00 0xAA 0x24 0x24
// (in particular for soft bit input!)
static char imet54_header[] = //"0000000001""0101010101""0000000001""0101010101" // 20x 0x00AA
//"0000000001""0101010101""0000000001""0101010101"
//"0000000001""0101010101""0000000001""0101010101"
//"0000000001""0101010101""0000000001""0101010101"
//"0000000001""0101010101"
"0000000001""0101010101""0001001001""0001001001"; // 0x00 0xAA 0x24 0x24
//"0001001001""0001001001";
// preamble 10x 0x00 0xAA , sync: 4x 0x24 (, 0x42)
//static ui8_t imet54_header_bytes[8] = { 0x00, 0xAA, 0x00, 0xAA, 0x24, 0x24, 0x24, 0x24 }; // 0x42
/* ------------------------------------------------------------------------------------ */
#define BAUD_RATE 4798 //4800
/* ------------------------------------------------------------------------------------ */
static int de8n1(ui8_t *in, ui8_t *out, int len) {
int n = 0;
for (n = 0; n < len; n++) {
if (n % 10 > 0 && n % 10 < 9) {
*out = in[n];
out++;
}
}
return 0;
}
static int deinter64(ui8_t *in, ui8_t *out, int len) {
int i, j;
int n = 0;
unsigned char bits64[8][8];
while (n+64 <= len)
{
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) out[n + 8*j+i] = in[n + 8*i+j];
}
n += 64;
}
return len - n;
}
static ui8_t G[8][4] = // Generator
{{ 1, 1, 0, 1},
{ 1, 0, 1, 1},
{ 1, 0, 0, 0},
{ 0, 1, 1, 1},
{ 0, 1, 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
{ 1, 1, 1, 0}};
static ui8_t H[4][8] = // Parity-Check
{{ 1, 0, 1, 0, 1, 0, 1, 0},
{ 0, 1, 1, 0, 0, 1, 1, 0},
{ 0, 0, 0, 1, 1, 1, 1, 0},
{ 1, 1, 1, 1, 1, 1, 1, 1}};
static ui8_t He[8] = { 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x8}; // Spalten von H:
// 1-bit-error-Syndrome
static ui32_t bits2val_le(ui8_t *bits, int len) { // little endian
int j;
ui32_t val;
if ((len < 0) || (len > 32)) return -1; // = 0xFFFF
val = 0;
for (j = 0; j < len; j++) {
val |= bits[j] << j;
}
return val;
}
static int check(ui8_t code[8]) {
int i, j;
ui32_t synval = 0;
ui8_t syndrom[4];
int ret=0;
for (i = 0; i < 4; i++) {
syndrom[i] = 0;
for (j = 0; j < 8; j++) {
syndrom[i] ^= H[i][j] & code[j];
}
}
synval = bits2val_le(syndrom, 4);
if (synval) {
ret = -1;
for (j = 0; j < 8; j++) { // 1-bit-error
if (synval == He[j]) {
ret = j+1;
break;
}
}
}
else ret = 0;
if (ret > 0) code[ret-1] ^= 0x1;
return ret;
}
//static ui8_t R[4][8] =
// {{ 0, 0, 1, 0, 0, 0, 0, 0},
// { 0, 0, 0, 0, 1, 0, 0, 0},
// { 0, 0, 0, 0, 0, 1, 0, 0},
// { 0, 0, 0, 0, 0, 0, 1, 0}};
// RG=E
static ui8_t ham_lut[16] = { 0x00, 0x87, 0x99, 0x1E, 0xAA, 0x2D, 0x33, 0xB4,
0x4B, 0xCC, 0xD2, 0x55, 0xE1, 0x66, 0x78, 0xFF };
// c=(c0,...,c7) <-> m=(m0,..,m3) ; c=Gm, m=Rc
// m0=c2, m1=c4, m2=c5, m3=c6
static ui8_t hamming(int opt_ecc, ui8_t *cwb, ui8_t *sym) {
int j;
int ecc = 0;
ui8_t byt = 0;
ui8_t nib = 0;
ui8_t ret = 0;
if (opt_ecc) {
ecc = check(cwb);
}
byt = 0;
for (j = 0; j < 8; j++) {
byt |= (cwb[j]&1) << j;
}
for (nib = 0; nib < 16; nib++) {
if (byt == ham_lut[nib]) break;
}
*sym = nib;
if (ecc < 0 || nib >= 16) ret = 0xF0;
else if (ecc > 0) ret = 1;
else ret = 0;
return ret; // { 0, 1, 0xF0 }
}
static int crc32ok(ui8_t *bytes, int len) {
ui32_t poly0 = 0x0EDB;
ui32_t poly1 = 0x8260;
//[105 , 7, 0x8EDB, 0x8260] // CRC32 802-3 (Ethernet) reversed reciprocal
//[104 , 0, 0x48EB, 0x1ACA]
//[102 , 0, 0x1DB7, 0x04C1] // CRC32 802-3 (Ethernet) normal
int n = 104;
int b = 0;
ui32_t c0 = 0x48EB;
ui32_t c1 = 0x1ACA;
ui32_t nx_c0 = c0;
ui32_t nx_c1 = c1;
ui32_t data_c0 = (bytes[100]<<8) | bytes[101];
ui32_t data_c1 = (bytes[106]<<8) | bytes[107];
ui32_t crc0 = 0;
ui32_t crc1 = 0;
if (len < 108) return 0; // FRMBYTE_STD=108
while (n >= 0) {
if (n < 100 || (n > 101 && n < 106)) {
if ((bytes[n]>>b) & 1) {
crc0 ^= c0;
crc1 ^= c1;
}
}
if (c1 & 0x8000) {
nx_c0 ^= poly0;
nx_c1 ^= poly1;
}
nx_c0 <<= 1;
nx_c1 <<= 1;
if ( c1 & 0x8000) nx_c0 |= 1;
if ((c1^c0) & 0x8000) nx_c1 |= 1;
nx_c0 &= 0xFFFF;
c0 = nx_c0;
c1 = nx_c1;
if (b < 7) b += 1;
else {
b = 0;
if (n % 4 == 3) n -= 7;
else n += 1;
}
}
crc0 ^= data_c0^0x5000;
crc1 ^= data_c1^0x1DAD;
if (crc1 == 0 && (crc0 & 0xF000) == 0) return 1;
return 0;
}
/* ------------------------------------------------------------------------------------ */
static ui32_t u4be(ui8_t *bytes) { // 32bit unsigned int
ui32_t val = 0;
int i;
val = 0;
for (i = 0; i < 4; i++) {
val |= bytes[i] << (8*(3-i));
}
return val;
}
static i32_t i4be(ui8_t *bytes) { // 32bit signed int
i32_t val = 0;
int i;
val = 0;
for (i = 0; i < 4; i++) {
val |= bytes[i] << (8*(3-i));
}
return val;
}
static ui16_t u2be(ui8_t *bytes) { // 16bit unsigned int
ui16_t val = (bytes[0]<<8) | bytes[1];
return val;
}
#define pos_SN 0x00 // 4 byte
// GPS
#define pos_GPStime 0x04 // 4 byte
#define pos_GPSlat 0x08 // 4 byte
#define pos_GPSlon 0x0C // 4 byte
#define pos_GPSalt 0x10 // 4 byte
// PTU
#define pos_PTU_T 0x1C // float32
#define pos_PTU_RH 0x20 // float32
#define pos_PTU_Trh 0x24 // float32 // ?
//
#define pos_STATUS 0x2A // 2 byte
#define pos_F8 0x52 // 1 byte
#define pos_CNT11 0x5E // 1 byte
static int get_SN(gpx_t *gpx) {
gpx->SNu32 = u4be(gpx->frame+pos_SN);
return 0;
}
static int get_GPS(gpx_t *gpx) {
int val;
int valdeg;
float valmin;
// time
val = i4be(gpx->frame+pos_GPStime); //u4?
gpx->timems = val;
gpx->sek = (val%100000)/1e3;
val /= 1000;
val /= 100;
gpx->min = val % 100;
val /= 100;
gpx->std = val % 100;
// lat
val = i4be(gpx->frame+pos_GPSlat);
valdeg = val/1e6;
valmin = (val/1e6-valdeg)*100.0/60.0;
gpx->lat = (float)valdeg+valmin;
// lon
val = i4be(gpx->frame+pos_GPSlon);
valdeg = val/1e6;
valmin = (val/1e6-valdeg)*100.0/60.0;
gpx->lon = (float)valdeg+valmin;
// alt
val = i4be(gpx->frame+pos_GPSalt);
gpx->alt = val / 1e1;
// plausibility checks
if (gpx->timems < 0.0 || gpx->timems > 235959999) return -1;
if (gpx->lat < -90.0 || gpx->lat > 90.0) return -2;
if (gpx->lon < -180.0 || gpx->lon > 180.0) return -2;
if (gpx->alt < -400.0 || gpx->alt > 60000.0) return -2;
return 0;
}
// water vapor saturation pressure (Hyland and Wexler)
static float vaporSatP(float Tc) {
double T = Tc + 273.15f;
// H+W equation
double p = expf(-5800.2206 / T
+1.3914993
+6.5459673 * log(T)
-4.8640239e-2 * T
+4.1764768e-5 * T*T
-1.4452093e-8 * T*T*T
);
return (float)p; // [Pa]
}
static int get_PTU(gpx_t *gpx) {
int val = 0;
float *f = (float*)&val;
float rh = -1.0f;
int count_1e9 = 0;
// air temperature
val = i4be(gpx->frame + pos_PTU_T);
if (*f > -120.0f && *f < 80.0f) gpx->T = *f;
else gpx->T = -273.15f;
if (val == 0x4E6E6B28) {
gpx->T = -273.15f;
count_1e9 += 1;
}
// raw RH?
// water vapor saturation pressure (Hyland and Wexler)?
// (note: humidity sensor has significant time-lag at low temperatures)
val = i4be(gpx->frame + pos_PTU_RH);
if (*f < 0.0f) gpx->_RH = 0.0f;
else if (*f > 100.0f) gpx->_RH = 100.0f;
else gpx->_RH = *f;
if (val == 0x4E6E6B28) {
gpx->_RH = -1.0f;
count_1e9 += 1;
}
// temperatur of r.h. sensor?
val = i4be(gpx->frame + pos_PTU_Trh);
if (*f > -120.0f && *f < 80.0f) gpx->Trh = *f;
else gpx->Trh = -273.15f;
if (val == 0x4E6E6B28) {
gpx->Trh = -273.15f;
count_1e9 += 1;
}
// (Hyland and Wexler)
if (gpx->T > -273.0f && gpx->Trh > -273.0f) {
rh = gpx->_RH * vaporSatP(gpx->Trh)/vaporSatP(gpx->T);
if (rh < 0.0f) rh = 0.0f;
if (rh > 100.0f) rh = 100.0f;
}
else { // if Trh unusable, sensor damaged?
// rh = gpx->_RH;
}
gpx->RH = rh;
return count_1e9;
}
static int reset_gpx(gpx_t *gpx) {
// don't reset options
gpx->SNu32 = 0;
gpx->timems = 0;
gpx->std = 0;
gpx->min = 0;
gpx->sek = 0.0f;
gpx->lat = 0.0;
gpx->lon = 0.0;
gpx->alt = 0.0;
gpx->T = -273.15f;
gpx->Trh = -273.15f;
gpx->_RH = -1.0f;
gpx->RH = -1.0f;
gpx->status = 0;
return 0;
}
/* ------------------------------------------------------------------------------------ */
static int print_position(gpx_t *gpx, int len, int ecc_frm, int ecc_gps, int ecc_std) {
int prnGPS = 0,
prnPTU = 0,
prnSTS = 0;
int ptu1e9 = 0;
int tp_err = 0;
int pos_ok = 0,
frm_ok = 0,
crc_ok = 0,
std_ok = 0;
int rs_type = 54;
crc_ok = crc32ok(gpx->frame, len);
pos_ok = (ecc_frm >= 0 && len > pos_STATUS+2);
frm_ok = (ecc_frm >= 0 && len > pos_F8);
reset_gpx(gpx);
if (len > pos_GPSalt+4)
{
get_SN(gpx);
tp_err = get_GPS(gpx);
if (tp_err == 0) prnGPS = 1;
else frm_ok = 0;
}
if (len > pos_PTU_Trh+4)
{
ptu1e9 = get_PTU(gpx);
prnPTU = 1;
}
if (len > pos_STATUS+2) {
gpx->status = u2be(gpx->frame + pos_STATUS);
prnSTS = 1;
}
if (frm_ok) {
int pos;
int sum = 0;
for (pos = pos_STATUS+2; pos < pos_F8; pos++) {
sum += gpx->frame[pos];
}
if (sum == 0 && (gpx->status&0xF0F)==0 && ptu1e9 == 3) rs_type = 50;
}
if ( prnGPS && !gpx->option.slt )
{
fprintf(stdout, " (%d) ", gpx->SNu32);
fprintf(stdout, " %02d:%02d:%06.3f ", gpx->std, gpx->min, gpx->sek);
fprintf(stdout, " lat: %.5f ", gpx->lat);
fprintf(stdout, " lon: %.5f ", gpx->lon);
fprintf(stdout, " alt: %.1f ", gpx->alt);
if (gpx->option.ptu && prnPTU) {
fprintf(stdout, " ");
if (gpx->T > -273.0f) fprintf(stdout, " T=%.1fC ", gpx->T);
if (gpx->option.vbs) {
if (gpx->_RH > -0.5f) fprintf(stdout, " _RH=%.0f%% ", gpx->_RH);
if (gpx->Trh > -273.0f) fprintf(stdout, " _Trh=%.1fC ", gpx->Trh);
}
if (gpx->RH > -0.5f) fprintf(stdout, " RH=%.0f%% ", gpx->RH);
}
if ( crc_ok ) fprintf(stdout, " [OK]"); // std frame: frame[104..105]==0x4000 ?
else {
if (gpx->frame[pos_F8] == 0xF8) fprintf(stdout, " [NO]");
else if ( ecc_std == 0 ) { // full frame: pos_F8_full==pos_F8_std+11 ?
fprintf(stdout, " [ok]");
std_ok = 1;
}
else {
fprintf(stdout, " [no]");
std_ok = 0;
}
}
// (imet54:GPS+PTU) status: 003E , (imet50:GPS); 0030
if (gpx->option.vbs && prnSTS) {
fprintf(stdout, " [%04X] ", gpx->status);
}
// error correction
if (gpx->option.ecc && ecc_frm != 0) {
fprintf(stdout, " # (%d)", ecc_frm);
if (gpx->option.vbs) fprintf(stdout, " [%d]", ecc_gps);
}
fprintf(stdout, "\n");
}
// prnGPS,prnTPU
if (gpx->option.jsn && frm_ok && (crc_ok || std_ok) && (gpx->status&0x30)==0x30) {
char *ver_jsn = NULL;
char *subtype = (rs_type == 54) ? "IMET54" : "IMET50";
unsigned long count_day = (unsigned long)(gpx->std*3600 + gpx->min*60 + gpx->sek+0.5); // (gpx->timems/1e3+0.5) has gaps
fprintf(stdout, "{ \"type\": \"%s\"", "IMET5");
fprintf(stdout, ", \"frame\": %lu", count_day);
fprintf(stdout, ", \"id\": \"IMET5-%u\", \"datetime\": \"%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f",
gpx->SNu32, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt);
if (gpx->option.ptu) {
if (gpx->T > -273.0f) {
fprintf(stdout, ", \"temp\": %.1f", gpx->T );
}
if (gpx->RH > -0.5f) {
fprintf(stdout, ", \"humidity\": %.1f", gpx->RH );
}
}
fprintf(stdout, ", \"subtype\": \"%s\"", subtype); // "IMET54"/"IMET50"
if (gpx->jsn_freq > 0) {
fprintf(stdout, ", \"freq\": %d", gpx->jsn_freq );
}
// Reference time/position
fprintf(stdout, ", \"ref_datetime\": \"%s\"", "UTC" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
fprintf(stdout, ", \"ref_position\": \"%s\"", "MSL" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
#ifdef VER_JSN_STR
ver_jsn = VER_JSN_STR;
#endif
if (ver_jsn && *ver_jsn != '\0') fprintf(stdout, ", \"version\": \"%s\"", ver_jsn);
fprintf(stdout, " }\n");
fprintf(stdout, "\n");
}
return 0;
}
static void print_frame(gpx_t *gpx, int len, int b2B) {
int i, j;
int ecc_frm = 0, ecc_gps = 0, ecc_std = 0;
ui8_t bits8n1[BITFRAME_LEN+10]; // (RAW)BITFRAME_LEN
ui8_t bits[BITFRAME_LEN]; // 8/10 (RAW)BITFRAME_LEN
ui8_t nib[FRAME_LEN];
ui8_t ec[FRAME_LEN];
ui32_t ofs = 3*8; // (0x24 0x24) 0x24 0x24 0x42 : 3*8
if (b2B)
{
for (i = len; i < BITFRAME_LEN; i++) gpx->frame_bits[i] = 0;
memset(bits8n1, 0, BITFRAME_LEN+10);
memset(bits, 0, BITFRAME_LEN);
de8n1(gpx->frame_bits, bits8n1, len);
len = (8*len)/10;
len -= ofs;
j = deinter64(bits8n1+ofs, bits, len);
len -= j;
for (j = 0; j < len/8; j++) ec[j] = hamming(gpx->option.ecc, bits+8*j, nib+j);
for (j = 0; j < len/16; j++) gpx->frame[j] = (nib[2*j]<<4) | (nib[2*j+1] & 0xF);
ecc_frm = 0;
ecc_gps = 0;
ecc_std = 0;
for (j = 0; j < len/8; j++) { // alt. only GPS block
ecc_frm += ec[j];
if (ec[j] > 0x10) ecc_frm = -1;
if (j < pos_GPSalt+4+8) ecc_gps = ecc_frm;
if (j < 2*FRMBYTE_STD) ecc_std = ecc_frm;
if (ecc_frm < 0) break;
}
if (j < 2*FRMBYTE_STD) ecc_std = -1;
}
else {
ecc_frm = -2; // TODO: parse ecc-info from raw file
ecc_gps = ecc_frm;
}
if (gpx->option.raw)
{
int crc_ok = crc32ok(gpx->frame, len);
for (i = 0; i < len/16; i++) {
fprintf(stdout, "%02X", gpx->frame[i]);
if (gpx->option.raw > 1)
{
fprintf(stdout, " ");
if (gpx->option.raw == 4 && i % 4 == 3) fprintf(stdout, " ");
}
}
if ( crc_ok ) fprintf(stdout, " [OK]"); // std frame: frame[104..105]==0x4000 ?
else {
if (gpx->frame[pos_F8] == 0xF8) fprintf(stdout, " [NO]"); // full frame: pos_F8_full==pos_F8_std+11 ?
else if ( ecc_std == 0 ) fprintf(stdout, " [ok]");
else fprintf(stdout, " [no]");
}
if (gpx->option.ecc && ecc_frm != 0) {
fprintf(stdout, " # (%d)", ecc_frm);
fprintf(stdout, " [%d]", ecc_gps);
}
fprintf(stdout, "\n");
if (gpx->option.slt /*&& gpx->option.jsn*/) {
print_position(gpx, len/16, ecc_frm, ecc_gps, ecc_std);
}
}
else
{
print_position(gpx, len/16, ecc_frm, ecc_gps, ecc_std);
}
}
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[]) {
//int option_inv = 0; // invertiert Signal
int option_min = 0;
int option_iq = 0;
int option_iqdc = 0;
int option_lp = 0;
int option_dc = 0;
int option_noLUT = 0;
int option_softin = 0;
int option_pcmraw = 0;
int wavloaded = 0;
int sel_wavch = 0; // audio channel: left
int rawhex = 0;
int cfreq = -1;
float baudrate = -1;
FILE *fp;
char *fpname = NULL;
int k;
int bitpos = 0,
pos = 0;
int bit;
int bitQ;
hsbit_t hsbit, hsbit1;
int header_found = 0;
float thres = 0.7; // dsp.mv threshold
float _mv = 0.0;
float lpIQ_bw = 7.4e3;
int symlen = 1;
int bitofs = 1; // +0 .. +3
int shift = 0;
pcm_t pcm = {0};
dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp));
gpx_t gpx = {0};
hdb_t hdb = {0};
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _fileno(stdin)
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, -vx, -vv (info, aux, info/conf)\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -i, --invert\n");
//fprintf(stderr, " --crc (check CRC)\n");
fprintf(stderr, " --ths <x> (peak threshold; default=%.1f)\n", thres);
fprintf(stderr, " --iq0,2,3 (IQ data)\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
gpx.option.vbs = 1;
}
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
gpx.option.raw = 1;
}
else if ( (strcmp(*argv, "-r4") == 0) ) {
gpx.option.raw = 4;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
gpx.option.inv = 1;
}
else if (strcmp(*argv, "--ecc" ) == 0) { gpx.option.ecc = 1; }
else if (strcmp(*argv, "--sat") == 0) { gpx.option.sat = 1; }
else if (strcmp(*argv, "--ptu" ) == 0) { gpx.option.ptu = 1; }
else if (strcmp(*argv, "--silent") == 0) { gpx.option.slt = 1; }
else if (strcmp(*argv, "--ch2") == 0) { sel_wavch = 1; } // right channel (default: 0=left)
else if (strcmp(*argv, "--auto") == 0) { gpx.option.aut = 1; }
else if (strcmp(*argv, "--softin") == 0) { option_softin = 1; } // float32 soft input
else if (strcmp(*argv, "--ths") == 0) {
++argv;
if (*argv) {
thres = atof(*argv);
}
else return -1;
}
else if ( (strcmp(*argv, "-d") == 0) ) {
++argv;
if (*argv) {
shift = atoi(*argv);
if (shift > 4) shift = 4;
if (shift < -4) shift = -4;
}
else return -1;
}
else if ( (strcmp(*argv, "--br") == 0) ) {
++argv;
if (*argv) {
baudrate = atof(*argv);
if (baudrate < 4600 || baudrate > 5000) baudrate = BAUD_RATE; // default: 4798
}
else return -1;
}
else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod
else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; }
else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3
else if (strcmp(*argv, "--iqdc") == 0) { option_iqdc = 1; } // iq-dc removal (iq0,2,3)
else if (strcmp(*argv, "--IQ") == 0) { // fq baseband -> IF (rotate from and decimate)
double fq = 0.0; // --IQ <fq> , -0.5 < fq < 0.5
++argv;
if (*argv) fq = atof(*argv);
else return -1;
if (fq < -0.5) fq = -0.5;
if (fq > 0.5) fq = 0.5;
dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t)
option_iq = 5;
}
else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ/IF lowpass
else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz
double bw = 0.0;
++argv;
if (*argv) bw = atof(*argv);
else return -1;
if (bw > 4.6 && bw < 24.0) lpIQ_bw = bw*1e3;
option_lp |= LP_IQ;
}
else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass
else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; }
else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; }
else if (strcmp(*argv, "--min") == 0) {
option_min = 1;
}
else if (strcmp(*argv, "--json") == 0) {
gpx.option.jsn = 1;
gpx.option.ecc = 1;
}
else if (strcmp(*argv, "--jsn_cfq") == 0) {
int frq = -1; // center frequency / Hz
++argv;
if (*argv) frq = atoi(*argv); else return -1;
if (frq < 300000000) frq = -1;
cfreq = frq;
}
else if (strcmp(*argv, "--rawhex") == 0) { rawhex = 2; } // raw hex input
else if (strcmp(*argv, "-") == 0) {
int sample_rate = 0, bits_sample = 0, channels = 0;
++argv;
if (*argv) sample_rate = atoi(*argv); else return -1;
++argv;
if (*argv) bits_sample = atoi(*argv); else return -1;
channels = 2;
if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) {
fprintf(stderr, "- <sr> <bs>\n");
return -1;
}
pcm.sr = sample_rate;
pcm.bps = bits_sample;
pcm.nch = channels;
option_pcmraw = 1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "error: open %s\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
if (option_iq == 5 && option_dc) option_lp |= LP_FM;
// LUT faster for decM, however frequency correction after decimation
// LUT recommonded if decM > 2
//
if (option_noLUT && option_iq == 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0;
if (gpx.option.raw && gpx.option.jsn) gpx.option.slt = 1;
if (cfreq > 0) gpx.jsn_freq = (cfreq+500)/1000;
#ifdef EXT_FSK
if (!option_softin) {
option_softin = 1;
fprintf(stderr, "reading float32 soft symbols\n");
}
#endif
if (!rawhex) {
if (!option_softin) {
if (option_iq == 0 && option_pcmraw) {
fclose(fp);
fprintf(stderr, "error: raw data not IQ\n");
return -1;
}
if (option_iq) sel_wavch = 0;
pcm.sel_ch = sel_wavch;
if (option_pcmraw == 0) {
k = read_wav_header(&pcm, fp);
if ( k < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
}
if (cfreq > 0) {
int fq_kHz = (cfreq - dsp.xlt_fq*pcm.sr + 500)/1e3;
gpx.jsn_freq = fq_kHz;
}
// imet54: BT=1.0, h=0.8,1.0 ?
symlen = 1;
// init dsp
//
dsp.fp = fp;
dsp.sr = pcm.sr;
dsp.bps = pcm.bps;
dsp.nch = pcm.nch;
dsp.ch = pcm.sel_ch;
dsp.br = (float)BAUD_RATE;
dsp.sps = (float)dsp.sr/dsp.br;
dsp.symlen = symlen;
dsp.symhd = symlen;
dsp._spb = dsp.sps*symlen;
dsp.hdr = imet54_header;
dsp.hdrlen = strlen(imet54_header);
dsp.BT = 1.0; // bw/time (ISI) // 0.3..0.5 // TODO
dsp.h = 0.8; //0.7; // 0.7..0.8? modulation index abzgl. BT // TODO
dsp.opt_iq = option_iq;
dsp.opt_iqdc = option_iqdc;
dsp.opt_lp = option_lp;
dsp.lpIQ_bw = lpIQ_bw; // 7.4e3 (6e3..8e3) // IF lowpass bandwidth
dsp.lpFM_bw = 6e3; // FM audio lowpass
dsp.opt_dc = option_dc;
dsp.opt_IFmin = option_min;
if ( dsp.sps < 5 ) {
fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps);
}
if (baudrate > 0) {
dsp.br = (float)baudrate;
dsp.sps = (float)dsp.sr/dsp.br;
fprintf(stderr, "sps corr: %.4f\n", dsp.sps);
}
k = init_buffers(&dsp); // BT=0.5 (IQ-Int: BT > 0.5 ?)
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");
return -1;
}
//if (option_iq >= 2) bitofs += 1; // FM: +1 , IQ: +2
bitofs += shift;
}
else {
// init circular header bit buffer
hdb.hdr = imet54_header;
hdb.len = strlen(imet54_header);
//db.thb = 1.0 - 3.1/(float)hdb.len; // 1.0-max_bit_errors/hdrlen
hdb.bufpos = -1;
hdb.buf = NULL;
/*
hdb.buf = calloc(hdb.len, sizeof(char));
if (hdb.buf == NULL) {
fprintf(stderr, "error: malloc\n");
return -1;
}
*/
hdb.ths = 0.8; // caution/test false positive
hdb.sbuf = calloc(hdb.len, sizeof(float));
if (hdb.sbuf == NULL) {
fprintf(stderr, "error: malloc\n");
return -1;
}
}
while ( 1 )
{
if (option_softin) {
header_found = find_softbinhead(fp, &hdb, &_mv);
}
else { // FM-audio:
header_found = find_header(&dsp, thres, 4, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0
_mv = dsp.mv;
}
if (header_found == EOF) break;
// mv == correlation score
if (_mv *(0.5-gpx.option.inv) < 0) {
if (gpx.option.aut == 0) header_found = 0;
else gpx.option.inv ^= 0x1;
}
if (header_found)
{
bitpos = 0; // byte_count*8-HEADLEN
pos = 0;
while ( pos < BITFRAME_LEN )
{
if (option_softin) {
float s = 0.0;
bitQ = f32soft_read(fp, &s);
if (bitQ != EOF) {
bit = (s>=0.0);
hsbit.hb = bit;
hsbit.sb = s;
}
}
else {
float bl = -1;
if (option_iq > 2) bl = 2.0;
//bitQ = read_slbit(&dsp, &bit, 0, bitofs, bitpos, bl, 0); // symlen=1
bitQ = read_softbit2p(&dsp, &hsbit, 0, bitofs, bitpos, bl, 0, &hsbit1); // symlen=1
bit = hsbit.hb;
}
if ( bitQ == EOF ) break; // liest 2x EOF
if (gpx.option.inv) {
hsbit.hb ^= 1;
hsbit.sb = -hsbit.sb;
bit ^= 1;
}
gpx.frame_bits[pos] = hsbit.hb & 1;
bitpos += 1;
pos++;
}
print_frame(&gpx, pos, 1);
if (pos < BITFRAME_LEN) break;
header_found = 0;
// bis Ende der Sekunde vorspulen
while ( 0 && bitpos < 4*BITFRAME_LEN/3 ) {
if (option_softin) {
float s = 0.0;
bitQ = f32soft_read(fp, &s);
}
else {
bitQ = read_slbit(&dsp, &bit, 0, bitofs, bitpos, -1, 0); // symlen=1
}
if (bitQ == EOF) break;
bitpos++;
}
}
}
if (!option_softin) free_buffers(&dsp);
else {
if (hdb.buf) { free(hdb.buf); hdb.buf = NULL; }
}
}
else //if (rawhex)
{
char buffer_rawhex[2*FRAME_LEN+12];
char *pbuf = NULL, *buf_sp = NULL;
ui8_t frmbyte;
int frameofs = 0, len, i;
while (1 > 0) {
pbuf = fgets(buffer_rawhex, 2*FRAME_LEN+12, fp);
if (pbuf == NULL) break;
buffer_rawhex[2*FRAME_LEN] = '\0';
buf_sp = strchr(buffer_rawhex, ' '); // # (%d) ecc-info?
if (buf_sp != NULL && buf_sp-buffer_rawhex < 2*FRAME_LEN) {
buffer_rawhex[buf_sp-buffer_rawhex] = '\0';
}
len = strlen(buffer_rawhex) / 2;
if (len > 20) {
for (i = 0; i < len; i++) { //%2x SCNx8=%hhx(inttypes.h)
sscanf(buffer_rawhex+2*i, "%2hhx", &frmbyte);
// wenn ohne %hhx: sscanf(buffer_rawhex+rawhex*i, "%2x", &byte); frame[frameofs+i] = (ui8_t)byte;
gpx.frame[frameofs+i] = frmbyte;
}
print_frame(&gpx, len*16, 0);
}
}
}
fclose(fp);
return 0;
}