RS-tracker/demod/demod_dft.c

696 wiersze
17 KiB
C

/*
* sync header: correlation/matched filter
* compile:
* gcc -c demod_dft.c
*
* author: zilog80
*/
/* ------------------------------------------------------------------------------------ */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <complex.h>
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef short i16_t;
typedef int i32_t;
#include "demod_dft.h"
static unsigned int sample_in, sample_out, delay;
static int buffered = 0;
static int L, M;
static float *match = NULL,
*bufs = NULL;
static char *rawbits = NULL;
static int Nvar = 0; // < M
static double xsum=0, qsum=0;
static float *xs = NULL,
*qs = NULL;
static float dc_ofs = 0.0;
static float dc = 0.0;
/* ------------------------------------------------------------------------------------ */
static int LOG2N, N_DFT;
static float complex *ew;
static float complex *Fm, *X, *Z, *cx;
static float *xn;
static void dft_raw(float complex *Z) {
int s, l, l2, i, j, k;
float complex w1, w2, T;
j = 1;
for (i = 1; i < N_DFT; i++) {
if (i < j) {
T = Z[j-1];
Z[j-1] = Z[i-1];
Z[i-1] = T;
}
k = N_DFT/2;
while (k < j) {
j = j - k;
k = k/2;
}
j = j + k;
}
for (s = 0; s < LOG2N; s++) {
l2 = 1 << s;
l = l2 << 1;
w1 = (float complex)1.0;
w2 = ew[s]; // cexp(-I*M_PI/(float)l2)
for (j = 1; j <= l2; j++) {
for (i = j; i <= N_DFT; i += l) {
k = i + l2;
T = Z[k-1] * w1;
Z[k-1] = Z[i-1] - T;
Z[i-1] = Z[i-1] + T;
}
w1 = w1 * w2;
}
}
}
static void dft(float *x, float complex *Z) {
int i;
for (i = 0; i < N_DFT; i++) Z[i] = (float complex)x[i];
dft_raw(Z);
}
static void Nidft(float complex *Z, float complex *z) {
int i;
for (i = 0; i < N_DFT; i++) z[i] = conj(Z[i]);
dft_raw(z);
// idft():
// for (i = 0; i < N_DFT; i++) z[i] = conj(z[i])/(float)N_DFT; // hier: z reell
}
/* ------------------------------------------------------------------------------------ */
int getCorrDFT(int K, unsigned int pos, float *maxv, unsigned int *maxvpos) {
int i;
int mp = -1;
float mx = 0.0;
float mx2 = 0.0;
float re_cx = 0.0;
float xnorm = 1;
unsigned int mpos = 0;
dc = 0.0;
if (K + L > N_DFT) return -1;
if (sample_out < L) return -2;
if (pos == 0) pos = sample_out;
for (i = 0; i < K+L; i++) xn[i] = bufs[(pos+M -(K+L-1) + i) % M];
while (i < N_DFT) xn[i++] = 0.0;
dft(xn, X);
dc = get_bufmu(pos-sample_out); //oder: dc = creal(X[0])/(K+L);
for (i = 0; i < N_DFT; i++) Z[i] = X[i]*Fm[i];
Nidft(Z, cx);
// relativ Peak - Normierung erst zum Schluss;
// dann jedoch nicht zwingend corr-Max wenn FM-Amplitude bzw. norm(x) nicht konstant
// (z.B. rs41 Signal-Pausen). Moeglicherweise wird dann wahres corr-Max in dem
// K-Fenster nicht erkannt, deshalb K nicht zu gross waehlen.
//
mx2 = 0.0; // t = L-1
for (i = L-1; i < K+L; i++) { // i=t .. i=t+K < t+1+K
re_cx = creal(cx[i]); // imag(cx)=0
if (re_cx*re_cx > mx2) {
mx = re_cx;
mx2 = mx*mx;
mp = i;
}
}
if (mp == L-1 || mp == K+L-1) return -4; // Randwert
// mp == t mp == K+t
mpos = pos - (K + L-1) + mp;
xnorm = sqrt(qs[(mpos + 2*M) % M]); // Nvar = L
mx /= xnorm*N_DFT;
*maxv = mx;
*maxvpos = mpos;
if (pos == sample_out) buffered = sample_out-mpos;
return mp;
}
/* ------------------------------------------------------------------------------------ */
static int sample_rate = 0, bits_sample = 0, channels = 0;
static float samples_per_bit = 0;
static int wav_ch = 0; // 0: links bzw. mono; 1: rechts
static int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
float read_wav_header(FILE *fp, float baudrate, int wav_channel) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if (wav_channel >= 0 && wav_channel < channels) wav_ch = wav_channel;
else wav_ch = 0;
fprintf(stderr, "channel-In : %d\n", wav_ch+1);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/baudrate;
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
return samples_per_bit;
}
static int f32read_sample(FILE *fp, float *s) {
int i;
short b = 0;
for (i = 0; i < channels; i++) {
if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF;
if (i == wav_ch) { // i = 0: links bzw. mono
//if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128
//if (bits_sample == 16) sint = (short)b;
if (bits_sample == 8) { b -= 128; }
*s = b/128.0;
if (bits_sample == 16) { *s /= 256.0; }
}
}
return 0;
}
float get_bufvar(int ofs) {
float mu = xs[(sample_out+M + ofs) % M]/Nvar;
float var = qs[(sample_out+M + ofs) % M]/Nvar - mu*mu;
return var;
}
float get_bufmu(int ofs) {
float mu = xs[(sample_out+M + ofs) % M]/Nvar;
return mu;
}
int f32buf_sample(FILE *fp, int inv) {
float s = 0.0;
float xneu, xalt;
if (f32read_sample(fp, &s) == EOF) return EOF;
if (inv) s = -s;
bufs[sample_in % M] = s - dc_ofs;
xneu = bufs[(sample_in ) % M];
xalt = bufs[(sample_in+M - Nvar) % M];
xsum += xneu - xalt; // + xneu - xalt
qsum += (xneu - xalt)*(xneu + xalt); // + xneu*xneu - xalt*xalt
xs[sample_in % M] = xsum;
qs[sample_in % M] = qsum;
sample_out = sample_in - delay;
sample_in += 1;
return 0;
}
static int read_bufbit(int symlen, char *bits, unsigned int mvp, int reset) {
// symlen==2: manchester2 0->10,1->01->1: 2.bit
static unsigned int rcount;
static float rbitgrenze;
double sum = 0.0;
if (reset) {
rcount = 0;
rbitgrenze = 0;
}
rbitgrenze += samples_per_bit;
do {
sum += bufs[(rcount + mvp + M) % M];
rcount++;
} while (rcount < rbitgrenze); // n < samples_per_bit
if (symlen == 2) {
rbitgrenze += samples_per_bit;
do {
sum -= bufs[(rcount + mvp + M) % M];
rcount++;
} while (rcount < rbitgrenze); // n < samples_per_bit
}
if (symlen != 2) {
if (sum >= 0) *bits = '1';
else *bits = '0';
}
else {
if (sum >= 0) strncpy(bits, "10", 2);
else strncpy(bits, "01", 2);
}
return 0;
}
int headcmp(int symlen, char *hdr, int len, unsigned int mvp, int inv, int option_dc) {
int errs = 0;
int pos;
int step = 1;
char sign = 0;
if (symlen != 1) step = 2;
if (inv) sign=1;
for (pos = 0; pos < len; pos += step) {
read_bufbit(symlen, rawbits+pos, mvp+1-(int)(len*samples_per_bit), pos==0);
}
rawbits[pos] = '\0';
while (len > 0) {
if ((rawbits[len-1]^sign) != hdr[len-1]) errs += 1;
len--;
}
if (option_dc && errs < 3) {
dc_ofs += dc;
}
return errs;
}
/* -------------------------------------------------------------------------- */
int read_sbit(FILE *fp, int symlen, int *bit, int inv, int ofs, int reset) {
// symlen==2: manchester2 10->0,01->1: 2.bit
static double bitgrenze;
static unsigned long scount;
float sample;
double sum = 0.0;
if (reset) {
scount = 0;
bitgrenze = 0;
}
if (symlen == 2) {
bitgrenze += samples_per_bit;
do {
if (buffered > 0) buffered -= 1;
else if (f32buf_sample(fp, inv) == EOF) return EOF;
sample = bufs[(sample_out-buffered + ofs + M) % M];
sum -= sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
}
bitgrenze += samples_per_bit;
do {
if (buffered > 0) buffered -= 1;
else if (f32buf_sample(fp, inv) == EOF) return EOF;
sample = bufs[(sample_out-buffered + ofs + M) % M];
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
return 0;
}
int read_spkbit(FILE *fp, int symlen, int *bit, int inv, int ofs, int reset, int spike) {
// symlen==2: manchester2 10->0,01->1: 2.bit
static double bitgrenze;
static unsigned long scount;
float sample;
float avg;
float ths = 0.5, scale = 0.27;
double sum = 0.0;
if (reset) {
scount = 0;
bitgrenze = 0;
}
if (symlen == 2) {
bitgrenze += samples_per_bit;
do {
if (buffered > 0) buffered -= 1;
else if (f32buf_sample(fp, inv) == EOF) return EOF;
sample = bufs[(sample_out-buffered + ofs + M) % M];
avg = 0.5*(bufs[(sample_out-buffered-1 + ofs + M) % M]
+bufs[(sample_out-buffered+1 + ofs + M) % M]);
if (spike && fabs(sample - avg) > ths) sample = avg + scale*(sample - avg); // spikes
sum -= sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
}
bitgrenze += samples_per_bit;
do {
if (buffered > 0) buffered -= 1;
else if (f32buf_sample(fp, inv) == EOF) return EOF;
sample = bufs[(sample_out-buffered + ofs + M) % M];
avg = 0.5*(bufs[(sample_out-buffered-1 + ofs + M) % M]
+bufs[(sample_out-buffered+1 + ofs + M) % M]);
if (spike && fabs(sample - avg) > ths) sample = avg + scale*(sample - avg); // spikes
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
return 0;
}
/* -------------------------------------------------------------------------- */
int read_softbit(FILE *fp, int symlen, int *bit, float *sb, float level, int inv, int ofs, int reset) {
// symlen==2: manchester2 10->0,01->1: 2.bit
static double bitgrenze;
static unsigned long scount;
float sample;
double sum = 0.0;
int n = 0;
if (reset) {
scount = 0;
bitgrenze = 0;
}
if (symlen == 2) {
bitgrenze += samples_per_bit;
do {
if (buffered > 0) buffered -= 1;
else if (f32buf_sample(fp, inv) == EOF) return EOF;
sample = bufs[(sample_out-buffered + ofs + M) % M];
if (scount > bitgrenze-samples_per_bit && scount < bitgrenze-2)
{
sum -= sample;
n++;
}
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
}
bitgrenze += samples_per_bit;
do {
if (buffered > 0) buffered -= 1;
else if (f32buf_sample(fp, inv) == EOF) return EOF;
sample = bufs[(sample_out-buffered + ofs + M) % M];
if (scount > bitgrenze-samples_per_bit && scount < bitgrenze-2)
{
sum += sample;
n++;
}
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
*sb = sum / n;
if (*sb > +2.5*level) *sb = +0.8*level;
if (*sb > +level) *sb = +level;
if (*sb < -2.5*level) *sb = -0.8*level;
if (*sb < -level) *sb = -level;
*sb /= level;
return 0;
}
float header_level(char hdr[], int hLen, unsigned int pos, int inv) {
int n, bitn;
int sgn = 0;
double s = 0.0;
double sum = 0.0;
n = 0;
bitn = 0;
while ( bitn < hLen && (n < L) ) {
sgn = (hdr[bitn]&1)*2-1; // {'0','1'} -> {-1,1}
s = bufs[(pos-L + n + M) % M];
if (inv) s = -s;
sum += s * sgn;
n++;
bitn = n / samples_per_bit;
}
sum /= n;
return sum;
}
/* -------------------------------------------------------------------------- */
static double norm2_match() {
int i;
double x, y = 0.0;
for (i = 0; i < L; i++) {
x = match[i];
y += x*x;
}
return y;
}
int init_buffers(char hdr[], int hLen, int shape) {
//hLen = strlen(header) = HEADLEN;
int i, pos;
float b, x;
float normMatch;
float alpha, sqalp, a = 1.0;
int p2 = 1;
int K;
int n, k;
float *m = NULL;
L = hLen * samples_per_bit + 0.5;
M = 3*L;
// if (samples_per_bit < 6) M = 6*L;
sample_in = 0;
p2 = 1;
while (p2 < M) p2 <<= 1;
while (p2 < 0x2000) p2 <<= 1; // or 0x4000, if sample not too short
M = p2;
N_DFT = p2;
LOG2N = log(N_DFT)/log(2)+0.1; // 32bit cpu ... intermediate floating-point precision
//while ((1 << LOG2N) < N_DFT) LOG2N++; // better N_DFT = (1 << LOG2N) ...
delay = L/16;
K = M-L - delay; // L+K < M
Nvar = L; //L/2; // = L/k
bufs = (float *)calloc( M+1, sizeof(float)); if (bufs == NULL) return -100;
match = (float *)calloc( L+1, sizeof(float)); if (match == NULL) return -100;
xs = (float *)calloc( M+1, sizeof(float)); if (xs == NULL) return -100;
qs = (float *)calloc( M+1, sizeof(float)); if (qs == NULL) return -100;
rawbits = (char *)calloc( 2*hLen+1, sizeof(char)); if (rawbits == NULL) return -100;
for (i = 0; i < M; i++) bufs[i] = 0.0;
alpha = exp(0.8);
sqalp = sqrt(alpha/M_PI);
//a = sqalp;
for (i = 0; i < L; i++) {
pos = i/samples_per_bit;
x = (i - pos*samples_per_bit)*2.0/samples_per_bit - 1;
a = sqalp;
if ( ( pos < hLen-1 && hdr[pos]!=hdr[pos+1] && x > 0.0 )
|| ( pos > 0 && hdr[pos-1]!=hdr[pos] && x < 0.0 ) ) // x=0: a=sqalp
{
switch (shape) {
case 1: if ( fabs(x) > 0.6 ) a *= (1 - fabs(x))/0.6;
break;
case 2: a = sqalp * exp(-alpha*x*x);
break;
case 3: a = 1 - fabs( x );
break;
default: a = sqalp;
if (i-pos*samples_per_bit < 2 ||
i-pos*samples_per_bit > samples_per_bit-2) a = 0.8*sqalp;
}
}
b = ((hdr[pos] & 0x1) - 0.5)*2.0; // {-1,+1}
b *= a;
match[i] = b;
}
normMatch = sqrt(norm2_match());
for (i = 0; i < L; i++) {
match[i] /= normMatch;
}
xn = calloc(N_DFT+1, sizeof(float)); if (xn == NULL) return -1;
ew = calloc(LOG2N+1, sizeof(complex float)); if (ew == NULL) return -1;
Fm = calloc(N_DFT+1, sizeof(complex float)); if (Fm == NULL) return -1;
X = calloc(N_DFT+1, sizeof(complex float)); if (X == NULL) return -1;
Z = calloc(N_DFT+1, sizeof(complex float)); if (Z == NULL) return -1;
cx = calloc(N_DFT+1, sizeof(complex float)); if (cx == NULL) return -1;
for (n = 0; n < LOG2N; n++) {
k = 1 << n;
ew[n] = cexp(-I*M_PI/(float)k);
}
m = calloc(N_DFT+1, sizeof(float)); if (m == NULL) return -1;
for (i = 0; i < L; i++) m[L-1 - i] = match[i]; // t = L-1
while (i < N_DFT) m[i++] = 0.0;
dft(m, Fm);
free(m); m = NULL;
return K;
}
int free_buffers() {
if (match) { free(match); match = NULL; }
if (bufs) { free(bufs); bufs = NULL; }
if (xs) { free(xs); xs = NULL; }
if (qs) { free(qs); qs = NULL; }
if (rawbits) { free(rawbits); rawbits = NULL; }
if (xn) { free(xn); xn = NULL; }
if (ew) { free(ew); ew = NULL; }
if (Fm) { free(Fm); Fm = NULL; }
if (X) { free(X); X = NULL; }
if (Z) { free(Z); Z = NULL; }
if (cx) { free(cx); cx = NULL; }
return 0;
}
/* ------------------------------------------------------------------------------------ */
unsigned int get_sample() {
return sample_out;
}