/* * compile: * gcc -c iq_base.c * speedup: * gcc -O2 -c iq_base.c * or * gcc -Ofast -c iq_base.c * * author: zilog80 */ /* ------------------------------------------------------------------------------------ */ #include #include #include #include "iq_base.h" /* ------------------------------------------------------------------------------------ */ //static void raw_dft(dft_t *dft, float complex *Z) { int s, l, l2, i, j, k; float complex w1, w2, T; float complex _1 = (float complex)1.0; j = 1; for (i = 1; i < dft->N; i++) { if (i < j) { T = Z[j-1]; Z[j-1] = Z[i-1]; Z[i-1] = T; } k = dft->N/2; while (k < j) { j = j - k; k = k/2; } j = j + k; } for (s = 0; s < dft->LOG2N; s++) { l2 = 1 << s; l = l2 << 1; w1 = _1; w2 = dft->ew[s]; // cexp(-I*M_PI/(float)l2) for (j = 1; j <= l2; j++) { for (i = j; i <= dft->N; i += l) { k = i + l2; T = Z[k-1] * w1; Z[k-1] = Z[i-1] - T; Z[i-1] = Z[i-1] + T; } w1 = w1 * w2; } } } static void cdft(dft_t *dft, float complex *z, float complex *Z) { int i; for (i = 0; i < dft->N; i++) Z[i] = z[i]; raw_dft(dft, Z); } static void rdft(dft_t *dft, float *x, float complex *Z) { int i; for (i = 0; i < dft->N; i++) Z[i] = (float complex)x[i]; raw_dft(dft, Z); } static void Nidft(dft_t *dft, float complex *Z, float complex *z) { int i; for (i = 0; i < dft->N; i++) z[i] = conj(Z[i]); raw_dft(dft, z); // idft(): // for (i = 0; i < dft->N; i++) z[i] = conj(z[i])/(float)dft->N; // hier: z reell } static float bin2freq0(dft_t *dft, int k) { float fq = dft->sr * k / /*(float)*/dft->N; if (fq >= dft->sr/2.0) fq -= dft->sr; return fq; } //static float bin2freq(dft_t *dft, int k) { float fq = k / (float)dft->N; if ( fq >= 0.5) fq -= 1.0; return fq*dft->sr; } //static float bin2fq(dft_t *dft, int k) { float fq = k / (float)dft->N; if ( fq >= 0.5) fq -= 1.0; return fq; } static int max_bin(dft_t *dft, float complex *Z) { int k, kmax; double max; max = 0; kmax = 0; for (k = 0; k < dft->N; k++) { if (cabs(Z[k]) > max) { max = cabs(Z[k]); kmax = k; } } return kmax; } static int dft_window(dft_t *dft, int w) { int n; if (w < 0 || w > 3) return -1; for (n = 0; n < dft->N2; n++) { switch (w) { case 0: // (boxcar) dft->win[n] = 1.0; break; case 1: // Hann dft->win[n] = 0.5 * ( 1.0 - cos(2*M_PI*n/(float)(dft->N2-1)) ); break ; case 2: // Hamming dft->win[n] = 25/46.0 + (1.0 - 25/46.0)*cos(2*M_PI*n / (float)(dft->N2-1)); break ; case 3: // Blackmann dft->win[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n / (float)(dft->N2-1)) + 1430/18608.0*cos(4*M_PI*n / (float)(dft->N2-1)); break ; } } while (n < dft->N) dft->win[n++] = 0.0; return 0; } //static double ilog102 = 0.434294482/2.0; // log(10)/2 void db_power(dft_t *dft, float complex Z[], float db[]) { // iq-samples/V [-1..1] int i; // dBw = 2*dBv, P=c*U*U for (i = 0; i < dft->N; i++) { // dBw = 2*10*log10(V/V0) db[i] = 20.0 * log10(cabs(Z[i])/dft->N2+1e-20); // 20log10(Z/N) } } /* ------------------------------------------------------------------------------------ */ static int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } int read_wav_header(pcm_t *pcm) { FILE *fp = pcm->fp; char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; int sample_rate = 0, bits_sample = 0, channels = 0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4) && strncmp(txt, "RF64", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1; if (sample_rate == 900001) sample_rate -= 1; pcm->sr = sample_rate; pcm->bps = bits_sample; pcm->nch = channels; return 0; } typedef struct { double sumIQx; double sumIQy; float avgIQx; float avgIQy; ui32_t cnt; ui32_t maxcnt; ui32_t maxlim; } iq_dc_t; static iq_dc_t IQdc; int iq_dc_init(pcm_t *pcm) { memset(&IQdc, 0, sizeof(IQdc)); IQdc.maxlim = pcm->sr; IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1 if (pcm->decM > 1) { IQdc.maxlim *= pcm->decM; IQdc.maxcnt *= pcm->decM; } return 0; } static int f32read_csample(dsp_t *dsp, float complex *z) { float x, y; if (dsp->bps == 32) { //float32 float f[2]; if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = f[0]; y = f[1]; } else if (dsp->bps == 16) { //int16 short b[2]; if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = b[0]/32768.0; y = b[1]/32768.0; } else { // dsp->bps == 8 //uint8 ui8_t u[2]; if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = (u[0]-128)/128.0; y = (u[1]-128)/128.0; } *z = (x - IQdc.avgIQx) + I*(y - IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } return 0; } volatile int bufeof = 0; // threads exit volatile int rbf1; static volatile int rbf; #ifdef CLK #include static struct timespec t_1; static unsigned int in_smp; static int t_init = 0; static double t_acc = 0; #endif static int f32_cblk(dsp_t *dsp) { int n; int BL = dsp->decM * blk_sz; int len = BL; float x, y; ui8_t s[4*2*BL]; //uin8,int16,float32 ui8_t *u = (ui8_t*)s; short *b = (short*)s; float *f = (float*)s; #ifdef CLK if ( t_init == 0 ) { t_init = 1; clock_gettime(CLOCK_REALTIME, &t_1); } #endif len = fread( s, dsp->bps/8, 2*BL, dsp->fp) / 2; //for (n = 0; n < len; n++) dsp->thd->blk[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0; // u8: 0..255, 128 -> 0V for (n = 0; n < len; n++) { if (dsp->bps == 8) { //uint8 x = (u[2*n ]-128)/128.0; y = (u[2*n+1]-128)/128.0; } else if (dsp->bps == 16) { //int16 x = b[2*n ]/32768.0; y = b[2*n+1]/32768.0; } else { // dsp->bps == 32 //float32 x = f[2*n]; y = f[2*n+1]; } dsp->thd->blk[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } } if (len < BL) bufeof = 1; #ifdef CLK in_smp += len; if (in_smp >= dsp->sr_base) { double s_d = in_smp / (double)dsp->sr_base; double t_d = 0; struct timespec t_2; clock_gettime(CLOCK_REALTIME, &t_2); t_d = (t_2.tv_sec - t_1.tv_sec); t_d += (t_2.tv_nsec - t_1.tv_nsec)/1e9; if (t_init > 1 && t_d > 0.9) t_acc += t_d - s_d; else t_init = 2; if (dsp->opt_dbg) { fprintf(stderr, "insmp: %d dt: %.3f s_d: %.3f t_acc: %.3f\n", in_smp, t_d, s_d, t_acc); } t_1 = t_2; in_smp = 0; } #endif return len; } static int f32read_cblock(dsp_t *dsp) { // blk_cond int n; int len = dsp->decM; if (bufeof) return 0; //if (dsp->thd->used == 0) { } pthread_mutex_lock( dsp->thd->mutex ); if (rbf == 0) { len = f32_cblk(dsp); rbf = rbf1; // set all bits pthread_cond_broadcast( dsp->thd->cond ); } while ((rbf & dsp->thd->tn_bit) == 0) pthread_cond_wait( dsp->thd->cond, dsp->thd->mutex ); for (n = 0; n < dsp->decM; n++) dsp->decMbuf[n] = dsp->thd->blk[dsp->decM*dsp->blk_cnt + n]; dsp->blk_cnt += 1; if (dsp->blk_cnt == blk_sz) { rbf &= ~(dsp->thd->tn_bit); // clear bit(tn) dsp->blk_cnt = 0; } pthread_mutex_unlock( dsp->thd->mutex ); return len; } int reset_blockread(dsp_t *dsp) { int len = 0; pthread_mutex_lock( dsp->thd->mutex ); rbf1 &= ~(dsp->thd->tn_bit); if ( (rbf & dsp->thd->tn_bit) == dsp->thd->tn_bit ) { len = f32_cblk(dsp); rbf = rbf1; // set all bits pthread_cond_broadcast( dsp->thd->cond ); } pthread_mutex_unlock( dsp->thd->mutex ); return len; } // decimate lowpass static float *ws_dec; static double sinc(double x) { double y; if (x == 0) y = 1; else y = sin(M_PI*x)/(M_PI*x); return y; } static int lowpass_init(float f, int taps, float **pws) { double *h, *w; double norm = 0; int n; float *ws = NULL; if (taps % 2 == 0) taps++; // odd/symmetric if ( taps < 1 ) taps = 1; h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1; w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1; ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1; for (n = 0; n < taps; n++) { w[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann h[n] = 2*f*sinc(2*f*(n-(taps-1)/2)); ws[n] = w[n]*h[n]; norm += ws[n]; // 1-norm } for (n = 0; n < taps; n++) { ws[n] /= norm; // 1-norm } for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap *pws = ws; free(h); h = NULL; free(w); w = NULL; return taps; } int decimate_init(float f, int taps) { return lowpass_init(f, taps, &ws_dec); } int decimate_free() { if (ws_dec) { free(ws_dec); ws_dec = NULL; } return 0; } static float complex lowpass0(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { ui32_t n; double complex w = 0; for (n = 0; n < taps; n++) { w += buffer[(sample+n+1)%taps]*ws[taps-1-n]; } return (float complex)w; } //static __attribute__((optimize("-ffast-math"))) float complex lowpass() static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { float complex w = 0; int n; // -Ofast int S = taps-1 - (sample % taps); for (n = 0; n < taps; n++) { w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps] } return w; // symmetry: ws[n] == ws[taps-1-n] } static float complex lowpass2(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { float complex w = 0; int n; int s = sample % taps; int S1 = s+1; int S1N = S1-taps; int n0 = taps-1-s; for (n = 0; n < n0; n++) { w += buffer[S1+n]*ws[n]; } for (n = n0; n < taps; n++) { w += buffer[S1N+n]*ws[n]; } return w; // symmetry: ws[n] == ws[taps-1-n] } /* -------------------------------------------------------------------------- */ int read_ifblock(dsp_t *dsp, float complex *z) { //ui32_t s_reset = dsp->dectaps*dsp->lut_len; int j; if ( f32read_cblock(dsp) < dsp->decM ) return EOF; //if ( f32read_cblock(dsp) < dsp->decM * blk_sz) return EOF; for (j = 0; j < dsp->decM; j++) { dsp->decXbuffer[dsp->sample_decX] = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM]; dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0; dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0; } *z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec); //dsp->sample_in += 1; return 0; } int read_fftblock(dsp_t *dsp) { if ( f32read_cblock(dsp) < dsp->decM ) return EOF; return 0; } /* -------------------------------------------------------------------------- */ #define IF_TRANSITION_BW (4e3) // 4kHz transition width #define FM_TRANSITION_BW (2e3) // 2kHz transition width static double norm2_vect(float *vect, int n) { int i; double x, y = 0.0; for (i = 0; i < n; i++) { x = vect[i]; y += x*x; } return y; } #define HZBIN 100 int init_buffers(dsp_t *dsp) { float t; int n, k; if (dsp->thd->fft == 0) { // // pcm_dec_init() // // lookup table, exp-rotation int W = 2*8; // 16 Hz window int d = 1; // 1..W , groesster Teiler d <= W von sr_base int freq = (int)( dsp->thd->xlt_fq * (double)dsp->sr_base + 0.5); int freq0 = freq; // init double f0 = freq0 / (double)dsp->sr_base; // init for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr if (dsp->sr_base % d == 0) break; } if (d == 0) d = 1; // d >= 1 ? for (k = 0; k < W/2; k++) { if ((freq+k) % d == 0) { freq0 = freq + k; break; } if ((freq-k) % d == 0) { freq0 = freq - k; break; } } dsp->lut_len = dsp->sr_base / d; f0 = freq0 / (double)dsp->sr_base; dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex)); if (dsp->ex == NULL) return -1; for (n = 0; n < dsp->lut_len; n++) { t = f0*(double)n; dsp->ex[n] = cexp(t*2*M_PI*I); } dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex)); if (dsp->decXbuffer == NULL) return -1; } else { dsp->decXbuffer = NULL; dsp->ex = NULL; } dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex)); if (dsp->decMbuf == NULL) return -1; dsp->DFT.sr = dsp->sr_base; int mn = 0; // 0: N = M /* dsp->DFT.LOG2N = 14; dsp->DFT.N2 = 1 << dsp->DFT.LOG2N; if (dsp->DFT.N2 > dsp->DFT.sr/2) { dsp->DFT.LOG2N = 0; while ( (1 << (dsp->DFT.LOG2N+1)) < dsp->DFT.sr/2 ) dsp->DFT.LOG2N++; dsp->DFT.N2 = 1 << dsp->DFT.LOG2N; } */ dsp->DFT.LOG2N = log(dsp->DFT.sr/HZBIN)/log(2)+0.1; if (dsp->DFT.LOG2N < 10) dsp->DFT.LOG2N = 10; dsp->DFT.N2 = 1 << dsp->DFT.LOG2N; dsp->DFT.N = dsp->DFT.N2 << mn; dsp->DFT.LOG2N += mn; /* if (dsp->opt_dbg && dsp->thd->fft) { //fprintf(stderr, "HZBIN: %d , N: %d , Hz_per_bin: %.1f\n", HZBIN, dsp->DFT.N, bin2freq(&(dsp->DFT), 1)); } */ dsp->DFT.X = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.X == NULL) return -1; dsp->DFT.Z = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.Z == NULL) return -1; dsp->DFT.ew = calloc(dsp->DFT.LOG2N+1, sizeof(float complex)); if (dsp->DFT.ew == NULL) return -1; // FFT window // a) N2 = N // b) N2 < N (interpolation) dsp->DFT.win = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.win == NULL) return -1; // float real dsp->DFT.N2 = dsp->DFT.N; //dsp->DFT.N2 = dsp->DFT.N/2 - 1; // N=2^log2N dft_window(&dsp->DFT, 1); for (n = 0; n < dsp->DFT.LOG2N; n++) { k = 1 << n; dsp->DFT.ew[n] = cexp(-I*M_PI/(float)k); } return 0; } int free_buffers(dsp_t *dsp) { if (dsp->DFT.ew) { free(dsp->DFT.ew); dsp->DFT.ew = NULL; } if (dsp->DFT.X) { free(dsp->DFT.X); dsp->DFT.X = NULL; } if (dsp->DFT.Z) { free(dsp->DFT.Z); dsp->DFT.Z = NULL; } if (dsp->DFT.win) { free(dsp->DFT.win); dsp->DFT.win = NULL; } if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; } if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; } if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; } return 0; }