/* * mXX m18/m20 (test) * * (cf. mXX_20180919.c) * sync header: correlation/matched filter * files: mXXmod.c demod_mod.h demod_mod.c * compile: * gcc -c demod_mod.c * gcc mXXmod.c demod_mod.o -lm -o mXXmod * * 2018-09-19 Ury: (len=0x43) ./mXX -c -vv --br 9600 mXX_20180919.wav * 2019-11-06 Ury: (len=0x45) ./mXX -c -vv --br 9600 mXX_20191106.wav * 2020-02-14 Ury: (len=0x45) ./mXX -c -vv --br 9600 mXX_20200214.wav * 2020-05-11 Wien: (len=0x45) ./mXX -c -vv --br 9603 mXX_20200511.wav * * author: zilog80 */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif // optional JSON "version" // (a) set global // gcc -DVERSION_JSN [-I] ... #ifdef VERSION_JSN #include "version_jsn.h" #endif // or // (b) set local compiler option, e.g. // gcc -DVER_JSN_STR=\"0.0.2\" ... #include "demod_mod.h" typedef struct { i8_t vbs; // verbose output i8_t raw; // raw frames i8_t crc; // CRC check output i8_t ecc; // M10/M20: no ECC i8_t sat; // GPS sat data i8_t ptu; // PTU: temperature i8_t inv; i8_t aut; i8_t col; // colors i8_t jsn; // JSON output (auto_rx) i8_t slt; // silent (only raw/json) } option_t; // ? 9600 baud M20 <-> 9616 baud M10 ? #define BAUD_RATE 9600 // 9600..9604 // 9614..9616 /* -------------------------------------------------------------------------- */ /* Header = Sync-Header + Sonde-Header: 1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100 uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:) dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement) 0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 */ #define BITS 8 #define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header) #define HEADOFS 0 // Sync-Header (raw) // Sonde-Header (bits) //char head[] = "11001100110011001010011001001100"; //"0110010010011111"; // M10: 64 9F , M2K2: 64 8F //"0111011010011111"; // M10: 76 9F , w/ aux-data //"0110010001001001"; // M10-dop: 64 49 09 //"0110010010101111"; // M10+: 64 AF w/ gtop-GPS //"0100010100100000"; // M20: 45 20 (baud=9600) static char rawheader[] = "10011001100110010100110010011001"; #define FRAME_LEN (100+1) // 0x64+1 #define BITFRAME_LEN (FRAME_LEN*BITS) #define AUX_LEN 20 #define BITAUX_LEN (AUX_LEN*BITS) #define t_M2K2 0x8F #define t_M10 0x9F #define t_M10plus 0xAF #define t_M20 0x20 typedef struct { ui32_t gps_cnt; ui8_t cnt; ui8_t _diffcnt; int week; int tow_ms; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; float sek; double lat; double lon; double alt; double vH; double vD; double vV; double vx; double vy; double vD2; float T; float RH; float TH; float P; ui8_t numSV; ui8_t utc_ofs; char SN[12+4]; ui8_t SNraw[3]; ui8_t frame_bytes[FRAME_LEN+AUX_LEN+4]; char frame_bits[BITFRAME_LEN+BITAUX_LEN+8]; int auxlen; // ? 0 .. 0x57-0x45 int jsn_freq; // freq/kHz (SDR) option_t option; ui8_t type; } gpx_t; /* -------------------------------------------------------------------------- */ #define SECONDS_IN_WEEK (604800.0) // 7*86400 /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ static void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = GpsWeek * 7 + (GpsSeconds / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; *Day = J - 2447 * M / 80; J = M / 11; *Month = M + 2 - (12 * J); *Year = 100 * (C - 49) + Y + J; } /* -------------------------------------------------------------------------- */ static int bits2bytes(char *bitstr, ui8_t *bytes) { int i, bit, d, byteval; int bitpos, bytepos; bitpos = 0; bytepos = 0; while (bytepos < FRAME_LEN+AUX_LEN) { byteval = 0; d = 1; for (i = 0; i < BITS; i++) { //bit=*(bitstr+bitpos+i); /* little endian */ bit=*(bitstr+bitpos+7-i); /* big endian */ // bit == 'x' ? if (bit == '1') byteval += d; else /*if ((bit == '0') || (bit == 'x'))*/ byteval += 0; d <<= 1; } bitpos += BITS; bytes[bytepos++] = byteval & 0xFF; } //while (bytepos < FRAME_LEN+AUX_LEN) bytes[bytepos++] = 0; return 0; } /* -------------------------------------------------------------------------- */ /* M20 GPS data: Big Endian PTU/ADC data: little endian frame[0x0] = framelen // (0x43,) 0x45 frame[0x1] = 0x20 (type M20) frame[0x02..0x18]: most important data at beginning (incl. counter + M10check) frame[0x02..0x03]: ADC RH (incl.555) frame[0x04..0x05]: ADC Temperatur , frame[0x46]: scale/range ? frame[0x06..0x07]: ADC RH-Temperature range: 0:0..4095 , 1:4096..8191 , 2:8192..12287 frame[0x08..0x0A]: GPS altitude frame[0x0B..0x0E]: GPS hor.Vel. (velE,velN) frame[0x0F..0x11]: GPS TOW frame[0x15]: counter frame[0x16..0x17]: block check frame[0x18..0x19]: GPS ver.Vel. (velU) frame[0x1A..0x1B]: GPS week frame[0x1C..0x1F]: GPS latitude frame[0x20..0x23]: GPS longitude frame[0x44..0x45]: frame check */ #define stdFLEN 0x45 // pos[0]=0x45 // M20: 0x45 (0x43) M10: 0x64 #define pos_GPSTOW 0x0F // 3 byte #define pos_GPSlat 0x1C // 4 byte #define pos_GPSlon 0x20 // 4 byte #define pos_GPSalt 0x08 // 3 byte //#define pos_GPSsats 0xXX // 1 byte //#define pos_GPSutc 0xXX // 1 byte #define pos_GPSweek 0x1A // 2 byte //Velocity East-North-Up (ENU) #define pos_GPSvE 0x0B // 2 byte #define pos_GPSvN 0x0D // 2 byte #define pos_GPSvU 0x18 // 2 byte #define pos_SN 0x12 // 3 byte #define pos_CNT 0x15 // 1 byte #define pos_BlkChk 0x16 // 2 byte #define pos_Check (stdFLEN-1) // 2 byte #define len_BlkChk 0x16 // frame[0x02..0x17] , incl. chk16 #define ANSI_COLOR_RED "\x1b[31m" #define ANSI_COLOR_GREEN "\x1b[32m" #define ANSI_COLOR_YELLOW "\x1b[33m" #define ANSI_COLOR_BLUE "\x1b[34m" #define ANSI_COLOR_MAGENTA "\x1b[35m" #define ANSI_COLOR_CYAN "\x1b[36m" #define ANSI_COLOR_RESET "\x1b[0m" #define XTERM_COLOR_BROWN "\x1b[38;5;94m" // 38;5;{0..255}m #define col_Mtype "\x1b[38;5;250m" // 1 byte #define col_GPSweek "\x1b[38;5;20m" // 2 byte #define col_GPSTOW "\x1b[38;5;27m" // 3 byte #define col_GPSdate "\x1b[38;5;94m" //111 #define col_GPSlat "\x1b[38;5;34m" // 4 byte #define col_GPSlon "\x1b[38;5;70m" // 4 byte #define col_GPSalt "\x1b[38;5;82m" // 3 byte #define col_GPSvel "\x1b[38;5;36m" // 6 byte #define col_SN "\x1b[38;5;58m" // 3 byte #define col_CNT "\x1b[38;5;172m" // 1 byte #define col_Check "\x1b[38;5;11m" // 2 byte #define col_TXT "\x1b[38;5;244m" #define col_FRTXT "\x1b[38;5;244m" #define col_CSok "\x1b[38;5;2m" #define col_CSoo "\x1b[38;5;220m" #define col_CSno "\x1b[38;5;1m" #define col_CNST "\x1b[38;5;58m" // 3 byte /* $ for code in {0..255} > do echo -e "\e[38;5;${code}m"'\\e[38;5;'"$code"m"\e[0m" > done */ static int get_GPSweek(gpx_t *gpx) { int i; unsigned byte; ui8_t gpsweek_bytes[2]; int gpsweek; //gpx->numSV = gpx->frame_bytes[pos_GPSsats]; //gpx->utc_ofs = gpx->frame_bytes[pos_GPSutc]; for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSweek + i]; gpsweek_bytes[i] = byte; } gpsweek = (gpsweek_bytes[0] << 8) + gpsweek_bytes[1]; if (gpsweek > 4000) return -1; // Trimble Copernicus II WNRO (AirPrime XM1110 OK) if (gpsweek < 1304 /*2005-01-02*/ ) gpsweek += 1024; gpx->week = gpsweek; return 0; } //char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; static char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; static int get_GPStime(gpx_t *gpx) { int i, ret = 0; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime, day; int ms; double sec_gps0 = 0.0; for (i = 0; i < 3; i++) { byte = gpx->frame_bytes[pos_GPSTOW + i]; gpstime_bytes[i] = byte; } gpstime = 0; for (i = 0; i < 3; i++) { gpstime |= gpstime_bytes[i] << (8*(2-i)); } gpx->tow_ms = gpstime*1000; ms = 0;//gpstime % 1000; //gpstime /= 1000; gpx->gpssec = gpstime; day = gpstime / (24 * 3600); if ((day < 0) || (day > 6)) return -1; gpstime %= (24*3600); gpx->wday = day; gpx->std = gpstime/3600; gpx->min = (gpstime%3600)/60; gpx->sek = gpstime%60 + ms/1000.0; ret = get_GPSweek(gpx); if (ret) return ret; sec_gps0 = (double)gpx->week*SECONDS_IN_WEEK + gpx->tow_ms/1e3; gpx->gps_cnt = (ui32_t)(sec_gps0+0.5); gpx->cnt = gpx->frame_bytes[pos_CNT]; gpx->_diffcnt = (ui8_t)(gpx->gps_cnt - gpx->cnt); return 0; } //static double B60B60 = (1<<30)/90.0; // 2^32/360 = 2^30/90 = 0xB60B60.711x // M10 static double B60B60 = 1e6; // M20 static int get_GPSlat(gpx_t *gpx) { int i; unsigned byte; ui8_t gpslat_bytes[4]; int gpslat; double lat; for (i = 0; i < 4; i++) { byte = gpx->frame_bytes[pos_GPSlat + i]; gpslat_bytes[i] = byte; } gpslat = 0; for (i = 0; i < 4; i++) { gpslat |= gpslat_bytes[i] << (8*(3-i)); } lat = gpslat / B60B60; gpx->lat = lat; return 0; } static int get_GPSlon(gpx_t *gpx) { int i; unsigned byte; ui8_t gpslon_bytes[4]; int gpslon; double lon; for (i = 0; i < 4; i++) { byte = gpx->frame_bytes[pos_GPSlon + i]; gpslon_bytes[i] = byte; } gpslon = 0; for (i = 0; i < 4; i++) { gpslon |= gpslon_bytes[i] << (8*(3-i)); } lon = gpslon / B60B60; gpx->lon = lon; return 0; } static int get_GPSalt(gpx_t *gpx) { // 24 bit int i; unsigned byte; ui8_t gpsalt_bytes[4]; int gpsalt; double alt; for (i = 0; i < 3; i++) { byte = gpx->frame_bytes[pos_GPSalt + i]; gpsalt_bytes[i] = byte; } gpsalt = 0; for (i = 0; i < 3; i++) { gpsalt |= gpsalt_bytes[i] << (8*(2-i)); } alt = gpsalt / 100.0; gpx->alt = alt; return 0; } static int get_GPSvel(gpx_t *gpx) { int i; unsigned byte; ui8_t gpsVel_bytes[2]; short vel16; double vx, vy, dir, alpha; for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSvE + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; vx = vel16 / 1e2; // ost for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSvN + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; vy= vel16 / 1e2; // nord gpx->vx = vx; gpx->vy = vy; gpx->vH = sqrt(vx*vx+vy*vy); ///* alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts) dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t) gpx->vD2 = dir; //*/ dir = atan2(vx, vy) * 180 / M_PI; if (dir < 0) dir += 360; gpx->vD = dir; for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSvU + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; gpx->vV = vel16 / 1e2; return 0; } static int get_SN(gpx_t *gpx) { int i; ui8_t b0 = gpx->frame_bytes[pos_SN]; //0x12 ui32_t s2 = (gpx->frame_bytes[pos_SN+2]<<8) | gpx->frame_bytes[pos_SN+1]; ui8_t ym = b0 & 0x7F; // #{0x0,..,0x77}=120=10*12 ui8_t y = ym / 12; ui8_t m = (ym % 12)+1; // there is b0=0x69<0x80 from 2018-09-19 ... ui32_t sn_val = 0; for (i = 0; i < 11; i++) gpx->SN[i] = ' '; gpx->SN[11] = '\0'; for (i = 12; i < 15; i++) gpx->SN[i] = '\0'; gpx->SN[15] = '\0'; for (i = 0; i < 3; i++) { gpx->SNraw[i] = gpx->frame_bytes[pos_SN + i]; } sn_val = (gpx->SNraw[0]<<16) | (gpx->SNraw[1]<<8) | gpx->SNraw[2]; sprintf(gpx->SN, "%u%02u", y, m); // more samples needed sprintf(gpx->SN+3, "-%u-", (s2&0x3)+2); // (b0>>7)+1? (s2&0x3)+2? sprintf(gpx->SN+6, "%u", (s2>>(2+13))&0x1); // ?(s2>>(2+13))&0x1 ?? (s2&0x3)? sprintf(gpx->SN+7, "%04u", (s2>>2)&0x1FFF); if (sn_val == 0) { // get_GPStime(gpx); // replace SN: 001-2-00000 -> 000-0-00000-[_diffcnt] sprintf(gpx->SN, "%s", "000-0-00000"); sprintf(gpx->SN+11, "-%03u", gpx->_diffcnt & 0xFF); } return 0; } /* -------------------------------------------------------------------------- */ /* g : F^n -> F^16 // checksum, linear g(m||b) = f(g(m),b) // update checksum f : F^16 x F^8 -> F^16 linear 010100001000000101000000 001010000100000010100000 000101000010000001010000 000010100001000000101000 000001010000100000010100 100000100000010000001010 000000011010100000000100 100000000101010000000010 000000001000000000000000 000000000100000000000000 000000000010000000000000 000000000001000000000000 000000000000100000000000 000000000000010000000000 000000000000001000000000 000000000000000100000000 */ static int update_checkM10(int c, ui8_t b) { int c0, c1, t, t6, t7, s; c1 = c & 0xFF; // B b = (b >> 1) | ((b & 1) << 7); b ^= (b >> 2) & 0xFF; // A1 t6 = ( c & 1) ^ ((c>>2) & 1) ^ ((c>>4) & 1); t7 = ((c>>1) & 1) ^ ((c>>3) & 1) ^ ((c>>5) & 1); t = (c & 0x3F) | (t6 << 6) | (t7 << 7); // A2 s = (c >> 7) & 0xFF; s ^= (s >> 2) & 0xFF; c0 = b ^ t ^ s; return ((c1<<8) | c0) & 0xFFFF; } static int checkM10(ui8_t *msg, int len) { int i, cs; // msg[0] = len+1 cs = 0; for (i = 0; i < len; i++) { cs = update_checkM10(cs, msg[i]); } return cs & 0xFFFF; } // checkM10(frame, frame[0]-1) = blk_checkM10(frame[0], frame+1) static int blk_checkM10(int len, ui8_t *msg) { int i, cs; ui8_t pre = len & 0xFF; // len(block+chk16) cs = 0; cs = update_checkM10(cs, pre); for (i = 0; i < len-2; i++) { cs = update_checkM10(cs, msg[i]); } return cs & 0xFFFF; } /* -------------------------------------------------------------------------- */ static float get_Temp(gpx_t *gpx) { // NTC-Thermistor Shibaura PB5-41E ? // T00 = 273.15 + 0.0 , R00 = 15e3 // T25 = 273.15 + 25.0 , R25 = 5.369e3 // B00 = 3450.0 Kelvin // 0C..100C, poor fit low temps // [ T/C , R/1e3 ] ( [P__-43]/2.0 ): // [ -50.0 , 204.0 ] // [ -45.0 , 150.7 ] // [ -40.0 , 112.6 ] // [ -35.0 , 84.90 ] // [ -30.0 , 64.65 ] // [ -25.0 , 49.66 ] // [ -20.0 , 38.48 ] // [ -15.0 , 30.06 ] // [ -10.0 , 23.67 ] // [ -5.0 , 18.78 ] // [ 0.0 , 15.00 ] // [ 5.0 , 12.06 ] // [ 10.0 , 9.765 ] // [ 15.0 , 7.955 ] // [ 20.0 , 6.515 ] // [ 25.0 , 5.370 ] // [ 30.0 , 4.448 ] // [ 35.0 , 3.704 ] // [ 40.0 , 3.100 ] // -> Steinhart-Hart coefficients (polyfit): float p0 = 1.07303516e-03, p1 = 2.41296733e-04, p2 = 2.26744154e-06, p3 = 6.52855181e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) // range/scale 0, 1, 2: // M10-pcb float Rs[3] = { 12.1e3 , 36.5e3 , 475.0e3 }; // bias/series float Rp[3] = { 1e20 , 330.0e3 , 2000.0e3 }; // parallel, Rp[0]=inf ui8_t scT = 0; // {0,1,2}, range/scale voltage divider ui16_t ADC_RT; // ADC12 //ui16_t Tcal[2]; float x, R; float T = 0; // T/Kelvin ADC_RT = (gpx->frame_bytes[0x5] << 8) | gpx->frame_bytes[0x4]; //ui8_t sc = gpx->frame_bytes[0x32] & 3; // (frame[0x32]<<8)|frame[0x31] // frame[0x31..0x32], frame[0x32]: 0x9=0b1001:0, 0xA=0b1010:1, 0x8=0b1000:2 // ? Temp-Calibration depending on range ? // // range: 0:0..4095 , 1:4096..8191 , 2:8192..12287 /* if (sc == 0x1) { scT = 0; } else if (sc == 0x2) { scT = 1; ADC_RT -= 4096; } else if (sc == 0x0) { scT = 2; ADC_RT -= 8192; } else: // sc == 0x3 // test only range below: */ // range, i.e. (ADC_RT>>12)&3 if (ADC_RT > 8191) { scT = 2; ADC_RT -= 8192; } else if (ADC_RT > 4095) { scT = 1; ADC_RT -= 4096; } else { scT = 0; } // also if (ADC_RT>>12)&3 == 3 // ADC12 , 4096 = 1<<12, max: 4095 x = (4095.0-ADC_RT)/ADC_RT; // (Vcc-Vout)/Vout = Vcc/Vout - 1 R = Rs[scT] /( x - Rs[scT]/Rp[scT] ); if (R > 0) T = 1.0/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); if (T-273.15 < -120.0 || T-273.15 > 60.0) T = 0; // T < -120C, T > 60C invalid return T - 273.15; // Celsius } static float get_Tntc2(gpx_t *gpx) { // SMD ntc , RH-Temperature float Rs = 22.1e3; // P5.6=Vcc float R25 = 2.2e3;// 0.119e3; //2.2e3; float b = 3650.0; // B/Kelvin float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k // -> Steinhart-Hart coefficients (polyfit): float p0 = 4.42606809e-03, p1 = -6.58184309e-04, p2 = 8.95735557e-05, p3 = -2.84347503e-06; float T = 0.0; // T/Kelvin ui16_t ADC_ntc0; // M10: ADC12 P6.4(A4) float x, R; ADC_ntc0 = (gpx->frame_bytes[0x07] << 8) | gpx->frame_bytes[0x06]; // M10: 0x40,0x3F x = (4095.0 - ADC_ntc0)/ADC_ntc0; // (Vcc-Vout)/Vout R = Rs / x; if (R > 0) T = 1.0/(1.0/T25 + 1.0/b * log(R/R25)); //if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); return T - 273.15; } static float get_RHraw(gpx_t *gpx) { float _rh = -1.0; float _RH = -1.0; ui16_t ADC_rh; ADC_rh = (gpx->frame_bytes[0x03] << 8) | gpx->frame_bytes[0x02]; _rh = ADC_rh / (float)(1<<15); _RH = -1.0; if (_rh < 1.05) _RH = _rh*100.0; // Transfer function ? // Calibration ? // (Hyland and Wexler) Tntc2 (T_RH) <-> Tmain ? return _RH; } static float get_RH(gpx_t *gpx) { // from DF9DQ, // https://github.com/einergehtnochrein/ra-firmware // float TU = get_Tntc2(gpx); float RH = -1.0f; float x; ui16_t humval = (gpx->frame_bytes[0x03] << 8) | gpx->frame_bytes[0x02]; ui16_t rh_cal = (gpx->frame_bytes[0x30] << 8) | gpx->frame_bytes[0x2F]; float humidityCalibration = 6.4e8f / (rh_cal + 80000.0f); x = (humval + 80000.0f) * humidityCalibration * (1.0f - 5.8e-4f * (TU-25.0f)); x = 4.16e9f / x; x = 10.087f*x*x*x - 211.62f*x*x + 1388.2f*x - 2797.0f; RH = -1.0f; if (humval < 48000) { if (x > -20.0f && x < 120.f) { RH = x; if (RH < 0.0f ) RH = 0.0f; if (RH > 100.0f) RH = 100.0f; } } // (Hyland and Wexler) Tntc2 (T_RH) <-> Tmain ? return RH; } static float get_P(gpx_t *gpx) { // cf. DF9DQ // float hPa = 0.0f; ui16_t val = (gpx->frame_bytes[0x25] << 8) | gpx->frame_bytes[0x24]; if (val > 0) { hPa = val/16.0f; } return hPa; } /* -------------------------------------------------------------------------- */ static int print_pos(gpx_t *gpx, int bcOK, int csOK) { int err, err2; if (1 || gpx->type == t_M20) { err = 0; err |= get_GPStime(gpx); // incl. get_GPSweek(gpx) err |= get_GPSlat(gpx); err |= get_GPSlon(gpx); err |= get_GPSalt(gpx); err2 = get_GPSvel(gpx); } else err = 0xFF; if (!err) { Gps2Date(gpx->week, gpx->gpssec, &gpx->jahr, &gpx->monat, &gpx->tag); get_SN(gpx); if (gpx->option.ptu && csOK) { gpx->T = get_Temp(gpx); // temperature gpx->TH = get_Tntc2(gpx); // rel. humidity sensor temperature gpx->RH = get_RH(gpx); // relative humidity gpx->P = get_P(gpx); // (optional) pressure } if ( !gpx->option.slt ) { if (gpx->option.col) { fprintf(stdout, col_TXT); if (gpx->option.vbs >= 3) { fprintf(stdout, "[%3d]", gpx->frame_bytes[pos_CNT]); fprintf(stdout, " (W "col_GPSweek"%d"col_TXT") ", gpx->week); } fprintf(stdout, col_GPSTOW"%s"col_TXT" ", weekday[gpx->wday]); fprintf(stdout, col_GPSdate"%04d-%02d-%02d"col_TXT" "col_GPSTOW"%02d:%02d:%06.3f"col_TXT" ", gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek); fprintf(stdout, " lat: "col_GPSlat"%.5f"col_TXT" ", gpx->lat); fprintf(stdout, " lon: "col_GPSlon"%.5f"col_TXT" ", gpx->lon); fprintf(stdout, " alt: "col_GPSalt"%.2f"col_TXT" ", gpx->alt); if (!err2) { fprintf(stdout, " vH: "col_GPSvel"%4.1f"col_TXT" D: "col_GPSvel"%5.1f"col_TXT" vV: "col_GPSvel"%3.1f"col_TXT" ", gpx->vH, gpx->vD, gpx->vV); } if (gpx->option.vbs >= 1 && (bcOK || csOK)) { // SN fprintf(stdout, " SN: "col_SN"%s"col_TXT, gpx->SN); } if (gpx->option.vbs >= 1) { fprintf(stdout, " # "); if (bcOK > 0) fprintf(stdout, " "col_CSok"(ok)"col_TXT); else if (bcOK < 0) fprintf(stdout, " "col_CSoo"(oo)"col_TXT); else fprintf(stdout, " "col_CSno"(no)"col_TXT); // if (csOK) fprintf(stdout, " "col_CSok"[OK]"col_TXT); else fprintf(stdout, " "col_CSno"[NO]"col_TXT); } if (gpx->option.ptu && csOK) { fprintf(stdout, " "); if (gpx->T > -273.0f) fprintf(stdout, " T:%.1fC", gpx->T); if (gpx->RH > -0.5f) fprintf(stdout, " RH=%.0f%%", gpx->RH); if (gpx->option.vbs >= 2) { if (gpx->TH > -273.0f) fprintf(stdout, " TH:%.1fC", gpx->TH); } if (gpx->P > 0.0f) { if (gpx->P < 100.0f) fprintf(stdout, " P=%.2fhPa ", gpx->P); else fprintf(stdout, " P=%.1fhPa ", gpx->P); } } fprintf(stdout, ANSI_COLOR_RESET""); } else { if (gpx->option.vbs >= 3) { fprintf(stdout, "[%3d]", gpx->frame_bytes[pos_CNT]); fprintf(stdout, " (W %d) ", gpx->week); } fprintf(stdout, "%s ", weekday[gpx->wday]); fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%06.3f ", gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek); fprintf(stdout, " lat: %.5f ", gpx->lat); fprintf(stdout, " lon: %.5f ", gpx->lon); fprintf(stdout, " alt: %.2f ", gpx->alt); if (!err2) { fprintf(stdout, " vH: %4.1f D: %5.1f vV: %3.1f ", gpx->vH, gpx->vD, gpx->vV); } if (gpx->option.vbs >= 1 && (bcOK || csOK)) { // SN fprintf(stdout, " SN: %s", gpx->SN); } if (gpx->option.vbs >= 1) { fprintf(stdout, " # "); //if (bcOK) fprintf(stdout, " (ok)"); else fprintf(stdout, " (no)"); if (bcOK > 0) fprintf(stdout, " (ok)"); else if (bcOK < 0) fprintf(stdout, " (oo)"); else fprintf(stdout, " (no)"); // if (csOK) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); } if (gpx->option.ptu && csOK) { fprintf(stdout, " "); if (gpx->T > -273.0f) fprintf(stdout, " T:%.1fC", gpx->T); if (gpx->RH > -0.5f) fprintf(stdout, " RH=%.0f%%", gpx->RH); if (gpx->option.vbs >= 2) { if (gpx->TH > -273.0f) fprintf(stdout, " TH:%.1fC", gpx->TH); } if (gpx->P > 0.0f) { if (gpx->P < 100.0f) fprintf(stdout, " P=%.2fhPa ", gpx->P); else fprintf(stdout, " P=%.1fhPa ", gpx->P); } } } fprintf(stdout, "\n"); } if (gpx->option.jsn) { // Print out telemetry data as JSON if (csOK) { char *ver_jsn = NULL; int j; char sn_id[4+12+4] = "M20-"; strncpy(sn_id+4, gpx->SN, 12+4); sn_id[15+4] = '\0'; fprintf(stdout, "{ \"type\": \"%s\"", "M20"); fprintf(stdout, ", \"frame\": %lu, ", (unsigned long)gpx->gps_cnt); // sec_gps0+0.5 fprintf(stdout, "\"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f", sn_id, gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt, gpx->vH, gpx->vD, gpx->vV); if (gpx->option.ptu) { // temperature if (gpx->T > -273.0f) fprintf(stdout, ", \"temp\": %.1f", gpx->T ); if (gpx->RH > -0.5f) fprintf(stdout, ", \"humidity\": %.1f", gpx->RH ); if (gpx->P > 0.0f) fprintf(stdout, ", \"pressure\": %.2f", gpx->P ); } fprintf(stdout, ", \"rawid\": \"M20_%02X%02X%02X\"", gpx->frame_bytes[pos_SN], gpx->frame_bytes[pos_SN+1], gpx->frame_bytes[pos_SN+2]); // gpx->type fprintf(stdout, ", \"subtype\": \"0x%02X\"", gpx->type); if (gpx->jsn_freq > 0) { fprintf(stdout, ", \"freq\": %d", gpx->jsn_freq); } // Reference time/position fprintf(stdout, ", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec fprintf(stdout, ", \"ref_position\": \"%s\"", "GPS" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid #ifdef VER_JSN_STR ver_jsn = VER_JSN_STR; #endif if (ver_jsn && *ver_jsn != '\0') fprintf(stdout, ", \"version\": \"%s\"", ver_jsn); fprintf(stdout, " }\n"); fprintf(stdout, "\n"); } } } return err; } static int print_frame(gpx_t *gpx, int pos, int b2B) { int i; ui8_t byte; int cs1, cs2; int bc1, bc2, bc; int flen = stdFLEN; // stdFLEN=0x64, auxFLEN=0x76; M20:0x45 ? if (b2B) { bits2bytes(gpx->frame_bits, gpx->frame_bytes); } flen = gpx->frame_bytes[0]; if (flen == stdFLEN) gpx->auxlen = 0; else { gpx->auxlen = flen - stdFLEN; //if (gpx->auxlen < 0 || gpx->auxlen > AUX_LEN) gpx->auxlen = 0; // 0x43,0x45 } cs1 = (gpx->frame_bytes[pos_Check+gpx->auxlen] << 8) | gpx->frame_bytes[pos_Check+gpx->auxlen+1]; cs2 = checkM10(gpx->frame_bytes, pos_Check+gpx->auxlen); bc1 = (gpx->frame_bytes[pos_BlkChk] << 8) | gpx->frame_bytes[pos_BlkChk+1]; bc2 = blk_checkM10(len_BlkChk, gpx->frame_bytes+2); // len(essentialBlock+chk16) = 0x16 if (bc1 == bc2) bc = 1; else if (bc1 == 0) bc = -1; else bc = 0; switch (gpx->frame_bytes[1]) { case 0x8F: gpx->type = t_M2K2; break; case 0x9F: gpx->type = t_M10; break; case 0xAF: gpx->type = t_M10plus; break; case 0x20: gpx->type = t_M20; break; default : gpx->type = t_M10; } if (gpx->option.raw) { if (gpx->option.col /* && gpx->frame_bytes[1] != 0x49 */) { fprintf(stdout, col_FRTXT); for (i = 0; i < flen+1; i++) { byte = gpx->frame_bytes[i]; if (i == 1) fprintf(stdout, col_Mtype); if ((i >= pos_GPSTOW) && (i < pos_GPSTOW+3)) fprintf(stdout, col_GPSTOW); if ((i >= pos_GPSlat) && (i < pos_GPSlat+4)) fprintf(stdout, col_GPSlat); if ((i >= pos_GPSlon) && (i < pos_GPSlon+4)) fprintf(stdout, col_GPSlon); if ((i >= pos_GPSalt) && (i < pos_GPSalt+3)) fprintf(stdout, col_GPSalt); if ((i >= pos_GPSweek) && (i < pos_GPSweek+2)) fprintf(stdout, col_GPSweek); if ((i >= pos_GPSvE) && (i < pos_GPSvE+2)) fprintf(stdout, col_GPSvel); if ((i >= pos_GPSvN) && (i < pos_GPSvN+2)) fprintf(stdout, col_GPSvel); if ((i >= pos_GPSvU) && (i < pos_GPSvU+2)) fprintf(stdout, col_GPSvel); if ((i >= pos_SN) && (i < pos_SN+3)) fprintf(stdout, col_SN); if (i == pos_CNT) fprintf(stdout, col_CNT); if ((i >= pos_BlkChk) && (i < pos_BlkChk+2)) fprintf(stdout, col_Check); if ((i >= pos_Check+gpx->auxlen) && (i < pos_Check+gpx->auxlen+2)) fprintf(stdout, col_Check); fprintf(stdout, "%02x", byte); fprintf(stdout, col_FRTXT); } if (gpx->option.vbs) { fprintf(stdout, " # "col_Check"%04x"col_FRTXT, cs2); if (bc > 0) fprintf(stdout, " "col_CSok"(ok)"col_TXT); else if (bc < 0) fprintf(stdout, " "col_CSoo"(oo)"col_TXT); else fprintf(stdout, " "col_CSno"(no)"col_TXT); if (cs1 == cs2) fprintf(stdout, " "col_CSok"[OK]"col_TXT); else fprintf(stdout, " "col_CSno"[NO]"col_TXT); } fprintf(stdout, ANSI_COLOR_RESET"\n"); } else { for (i = 0; i < flen+1; i++) { byte = gpx->frame_bytes[i]; fprintf(stdout, "%02x", byte); } if (gpx->option.vbs) { fprintf(stdout, " # %04x", cs2); if (bc > 0) fprintf(stdout, " (ok)"); else if (bc < 0) fprintf(stdout, " (oo)"); else fprintf(stdout, " (no)"); if (cs1 == cs2) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); } fprintf(stdout, "\n"); } if (gpx->option.slt /*&& gpx->option.jsn && gpx->frame_bytes[1] != 0x49*/) { print_pos(gpx, bc, cs1 == cs2); } } /* else if (gpx->frame_bytes[1] == 0x49) { if (gpx->option.vbs == 3) { for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) { byte = gpx->frame_bytes[i]; fprintf(stdout, "%02x", byte); } if (cs1 == cs2) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); fprintf(stdout, "\n"); } } */ else print_pos(gpx, bc, cs1 == cs2); return (gpx->frame_bytes[0]<<8)|gpx->frame_bytes[1]; } /* -------------------------------------------------------------------------- */ int main(int argc, char **argv) { //int option_res = 0; // genauere Bitmessung int option_min = 0; int option_iq = 0; int option_iqdc = 0; int option_lp = 0; int option_dc = 0; int option_noLUT = 0; int option_softin = 0; int option_pcmraw = 0; int wavloaded = 0; int sel_wavch = 0; // audio channel: left int spike = 0; int rawhex = 0; int cfreq = -1; float baudrate = -1; FILE *fp = NULL; char *fpname = NULL; int k; int bit, bit0; int bitpos = 0; int bitQ; int pos; hsbit_t hsbit, hsbit1; //int headerlen = 0; int header_found = 0; float thres = 0.76; float _mv = 0.0; float lpIQ_bw = 24e3; int symlen = 2; int bitofs = 0; // 0 .. +2 int shift = 0; pcm_t pcm = {0}; dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp)); hdb_t hdb = {0}; gpx_t gpx = {0}; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); //fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -c, --color\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { gpx.option.vbs = 1; } else if ( (strcmp(*argv, "-vv" ) == 0) ) gpx.option.vbs = 2; else if ( (strcmp(*argv, "-vvv") == 0) ) gpx.option.vbs = 3; else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { gpx.option.raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { gpx.option.inv = 1; // nicht noetig } else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--color") == 0) ) { gpx.option.col = 1; } else if ( (strcmp(*argv, "--br") == 0) ) { ++argv; if (*argv) { baudrate = atof(*argv); if (baudrate < 9000 || baudrate > 10000) baudrate = BAUD_RATE; // default: M20:9600, M10:9615 } else return -1; } //else if (strcmp(*argv, "--res") == 0) { option_res = 1; } else if ( (strcmp(*argv, "--ptu") == 0) ) { gpx.option.ptu = 1; } else if ( (strcmp(*argv, "--spike") == 0) ) { spike = 1; } else if (strcmp(*argv, "--ch2") == 0) { sel_wavch = 1; } // right channel (default: 0=left) else if (strcmp(*argv, "--softin") == 0) { option_softin = 1; } // float32 soft input else if (strcmp(*argv, "--silent") == 0) { gpx.option.slt = 1; } else if (strcmp(*argv, "--ths") == 0) { ++argv; if (*argv) { thres = atof(*argv); } else return -1; } else if ( (strcmp(*argv, "-d") == 0) ) { ++argv; if (*argv) { shift = atoi(*argv); if (shift > 4) shift = 4; if (shift < -4) shift = -4; } else return -1; } else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; } else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3 else if (strcmp(*argv, "--iqdc") == 0) { option_iqdc = 1; } // iq-dc removal (iq0,2,3) else if (strcmp(*argv, "--IQ") == 0) { // fq baseband -> IF (rotate from and decimate) double fq = 0.0; // --IQ , -0.5 < fq < 0.5 ++argv; if (*argv) fq = atof(*argv); else return -1; if (fq < -0.5) fq = -0.5; if (fq > 0.5) fq = 0.5; dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t) option_iq = 5; } else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ/IF lowpass else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz double bw = 0.0; ++argv; if (*argv) bw = atof(*argv); else return -1; if (bw > 4.6 && bw < 48.0) lpIQ_bw = bw*1e3; option_lp |= LP_IQ; } else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; } else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; } else if (strcmp(*argv, "--min") == 0) { option_min = 1; } else if (strcmp(*argv, "--json") == 0) { gpx.option.jsn = 1; } else if (strcmp(*argv, "--jsn_cfq") == 0) { int frq = -1; // center frequency / Hz ++argv; if (*argv) frq = atoi(*argv); else return -1; if (frq < 300000000) frq = -1; cfreq = frq; } else if (strcmp(*argv, "--rawhex") == 0) { rawhex = 2; } // raw hex input else if (strcmp(*argv, "-") == 0) { int sample_rate = 0, bits_sample = 0, channels = 0; ++argv; if (*argv) sample_rate = atoi(*argv); else return -1; ++argv; if (*argv) bits_sample = atoi(*argv); else return -1; channels = 2; if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) { fprintf(stderr, "- \n"); return -1; } pcm.sr = sample_rate; pcm.bps = bits_sample; pcm.nch = channels; option_pcmraw = 1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "error: open %s\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; if (option_iq == 5 && option_dc) option_lp |= LP_FM; // LUT faster for decM, however frequency correction after decimation // LUT recommonded if decM > 2 // if (option_noLUT && option_iq == 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0; if (gpx.option.raw && gpx.option.jsn) gpx.option.slt = 1; if (cfreq > 0) gpx.jsn_freq = (cfreq+500)/1000; #ifdef EXT_FSK if (!option_softin) { option_softin = 1; fprintf(stderr, "reading float32 soft symbols\n"); } #endif if (!rawhex) { if (!option_softin) { if (option_iq == 0 && option_pcmraw) { fclose(fp); fprintf(stderr, "error: raw data not IQ\n"); return -1; } if (option_iq) sel_wavch = 0; pcm.sel_ch = sel_wavch; if (option_pcmraw == 0) { k = read_wav_header(&pcm, fp); if ( k < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } } if (cfreq > 0) { int fq_kHz = (cfreq - dsp.xlt_fq*pcm.sr + 500)/1e3; gpx.jsn_freq = fq_kHz; } // m10: BT>1?, h=1.2 ? symlen = 2; // init dsp // dsp.fp = fp; dsp.sr = pcm.sr; dsp.bps = pcm.bps; dsp.nch = pcm.nch; dsp.ch = pcm.sel_ch; dsp.br = (float)BAUD_RATE; dsp.sps = (float)dsp.sr/dsp.br; dsp.symlen = symlen; dsp.symhd = 1; // M10!header dsp._spb = dsp.sps*symlen; dsp.hdr = rawheader; dsp.hdrlen = strlen(rawheader); dsp.BT = 1.8; // bw/time (ISI) // 1.0..2.0 // M20 ? dsp.h = 0.9; // 1.2 modulation index // M20 ? dsp.opt_iq = option_iq; dsp.opt_iqdc = option_iqdc; dsp.opt_lp = option_lp; dsp.lpIQ_bw = lpIQ_bw; //24e3; // IF lowpass bandwidth dsp.lpFM_bw = 10e3; // FM audio lowpass dsp.opt_dc = option_dc; dsp.opt_IFmin = option_min; if ( dsp.sps < 8 ) { fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps); } if (baudrate > 0) { dsp.br = (float)baudrate; dsp.sps = (float)dsp.sr/dsp.br; fprintf(stderr, "sps corr: %.4f\n", dsp.sps); } //headerlen = dsp.hdrlen; k = init_buffers(&dsp); if ( k < 0 ) { fprintf(stderr, "error: init buffers\n"); return -1; } bitofs += shift; } else { // init circular header bit buffer hdb.hdr = rawheader; hdb.len = strlen(rawheader); //hdb.thb = 1.0 - 3.1/(float)hdb.len; // 1.0-max_bit_errors/hdrlen hdb.bufpos = -1; hdb.buf = NULL; /* calloc(hdb.len, sizeof(char)); if (hdb.buf == NULL) { fprintf(stderr, "error: malloc\n"); return -1; } */ hdb.ths = 0.8; // caution 0.7: false positive / offset hdb.sbuf = calloc(hdb.len, sizeof(float)); if (hdb.sbuf == NULL) { fprintf(stderr, "error: malloc\n"); return -1; } } while ( 1 ) { if (option_softin) { header_found = find_softbinhead(fp, &hdb, &_mv); } else { // FM-audio: header_found = find_header(&dsp, thres, 2, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0 _mv = dsp.mv; } if (header_found == EOF) break; // mv == correlation score if (_mv*(0.5-gpx.option.inv) < 0) { gpx.option.inv ^= 0x1; // M10: irrelevant } if (header_found) { bitpos = 0; pos = 0; pos /= 2; bit0 = '0'; // oder: _mv[j] > 0 while ( pos < BITFRAME_LEN+BITAUX_LEN ) { if (option_softin) { float s1 = 0.0; float s2 = 0.0; float s = 0.0; bitQ = f32soft_read(fp, &s1); if (bitQ != EOF) { bitQ = f32soft_read(fp, &s2); if (bitQ != EOF) { s = s2-s1; // integrate both symbols // only 2nd Manchester symbol: s2 bit = (s>=0.0); // no soft decoding } } } else { float bl = -1; if (option_iq >= 2) spike = 0; if (option_iq > 2) bl = 4.0; //bitQ = read_slbit(&dsp, &bit, 0, bitofs, bitpos, bl, spike); // symlen=2 bitQ = read_softbit2p(&dsp, &hsbit, 0, bitofs, bitpos, bl, spike, &hsbit1); // symlen=2 bit = hsbit.hb; } if ( bitQ == EOF ) { break; } gpx.frame_bits[pos] = 0x31 ^ (bit0 ^ bit); pos++; bit0 = bit; bitpos += 1; } gpx.frame_bits[pos] = '\0'; print_frame(&gpx, pos, 1); if (pos < BITFRAME_LEN) break; header_found = 0; // bis Ende der Sekunde vorspulen; allerdings Doppel-Frame alle 10 sek // M20 only single frame ... AUX ? if (gpx.option.vbs < 3) { // && (regulare frame) // print_frame-return? while ( bitpos < 5*BITFRAME_LEN ) { if (option_softin) { float s = 0.0; bitQ = f32soft_read(fp, &s); } else { bitQ = read_slbit(&dsp, &bit, 0, bitofs, bitpos, -1, 0); // symlen=2 } if (bitQ == EOF) break; bitpos++; } } pos = 0; } } if (!option_softin) free_buffers(&dsp); else { if (hdb.buf) { free(hdb.buf); hdb.buf = NULL; } } } else //if (rawhex) { char buffer_rawhex[2*(FRAME_LEN+AUX_LEN)+12]; char *pbuf = NULL, *buf_sp = NULL; ui8_t frmbyte; int frameofs = 0, len, i; while (1 > 0) { memset(buffer_rawhex, 0, 2*(FRAME_LEN+AUX_LEN)+12); pbuf = fgets(buffer_rawhex, 2*(FRAME_LEN+AUX_LEN)+12, fp); if (pbuf == NULL) break; buffer_rawhex[2*(FRAME_LEN+AUX_LEN)] = '\0'; buf_sp = strchr(buffer_rawhex, ' '); if (buf_sp != NULL && buf_sp-buffer_rawhex < 2*(FRAME_LEN+AUX_LEN)) { buffer_rawhex[buf_sp-buffer_rawhex] = '\0'; for (i = buf_sp-buffer_rawhex+1; i < 2*(FRAME_LEN+AUX_LEN); i++) buffer_rawhex[i] = '\0'; } len = strlen(buffer_rawhex) / 2; if (len > pos_GPSweek+2) { for (i = 0; i < len; i++) { //%2x SCNx8=%hhx(inttypes.h) sscanf(buffer_rawhex+2*i, "%2hhx", &frmbyte); // wenn ohne %hhx: sscanf(buffer_rawhex+rawhex*i, "%2x", &byte); frame[frameofs+i] = (ui8_t)byte; gpx.frame_bytes[frameofs+i] = frmbyte; } print_frame(&gpx, len*8, 0); } } } fclose(fp); return 0; }