/* * rs41 * sync header: correlation/matched filter * files: rs41mod.c bch_ecc_mod.c bch_ecc_mod.h demod_mod.c demod_mod.h * compile, either (a) or (b): * (a) * gcc -c demod_mod.c * gcc -DINCLUDESTATIC rs41mod.c demod_mod.o -lm -o rs41mod * (b) * gcc -c demod_mod.c * gcc -c bch_ecc_mod.c * gcc rs41mod.c demod_mod.o bch_ecc_mod.o -lm -o rs41mod * * author: zilog80 */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif // optional JSON "version" // (a) set global // gcc -DVERSION_JSN [-I] ... #ifdef VERSION_JSN #include "version_jsn.h" #endif // or // (b) set local compiler option, e.g. // gcc -DVER_JSN_STR=\"0.0.2\" ... //typedef unsigned char ui8_t; //typedef unsigned short ui16_t; //typedef unsigned int ui32_t; //typedef short i16_t; //typedef int i32_t; #include "demod_mod.h" //#define INCLUDESTATIC 1 #ifdef INCLUDESTATIC #include "bch_ecc_mod.c" #else #include "bch_ecc_mod.h" #endif typedef struct { i8_t vbs; // verbose output i8_t raw; // raw frames i8_t crc; // CRC check output i8_t ecc; // Reed-Solomon ECC i8_t sat; // GPS sat data i8_t ptu; // PTU: temperature humidity (pressure) i8_t dwp; // PTU derived: dew point i8_t aux; // decode xdata i8_t inv; i8_t aut; i8_t jsn; // JSON output (auto_rx) i8_t slt; // silent (only raw/json) i8_t cal; // json cal/conf } option_t; typedef struct { int typ; int msglen; int msgpos; int parpos; int hdrlen; int frmlen; } rscfg_t; static rscfg_t cfg_rs41 = { 41, (320-56)/2, 56, 8, 8, 320}; // const: msgpos, parpos #define NDATA_LEN 320 // std framelen 320 #define XDATA_LEN 198 #define FRAME_LEN (NDATA_LEN+XDATA_LEN) // max framelen 518 /* ui8_t //xframe[FRAME_LEN] = { 0x10, 0xB6, 0xCA, 0x11, 0x22, 0x96, 0x12, 0xF8}, = xorbyte( frame) frame[FRAME_LEN] = { 0x86, 0x35, 0xf4, 0x40, 0x93, 0xdf, 0x1a, 0x60}; // = xorbyte(xframe) */ typedef struct { float frm_bytescore[FRAME_LEN+8]; float ts; float last_frnb_ts; float last_calfrm_ts; ui16_t last_frnb; ui8_t last_calfrm; int sort_idx1[FRAME_LEN]; // ui8_t[] sort_cw1_idx int sort_idx2[FRAME_LEN]; // ui8_t[] sort_cw2_idx } ecdat_t; typedef struct { int out; int frnr; char id[9]; ui8_t numSV; int week; int tow_ms; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; float sek; double lat; double lon; double alt; double vH; double vD; double vV; float T; float RH; float TH; float P; float RH2; ui32_t crc; ui8_t frame[FRAME_LEN]; //ui8_t dfrm_shiftsgn[FRAME_LEN]; ui8_t dfrm_bitscore[FRAME_LEN]; ui8_t calibytes[51*16]; ui8_t calfrchk[51]; ui8_t calconf_complete; ui8_t calconf_sent; ui8_t *calconf_subfrm; // 1+16 byte cal/conf subframe float ptu_Rf1; // ref-resistor f1 (750 Ohm) float ptu_Rf2; // ref-resistor f2 (1100 Ohm) float ptu_co1[3]; // { -243.911 , 0.187654 , 8.2e-06 } float ptu_calT1[3]; // calibration T1 float ptu_co2[3]; // { -243.911 , 0.187654 , 8.2e-06 } float ptu_calT2[3]; // calibration T2-Hum float ptu_calH[2]; // calibration Hum float ptu_mtxH[42]; float ptu_corHp[3]; float ptu_corHt[12]; float ptu_Cf1; float ptu_Cf2; float ptu_calP[25]; ui32_t freq; // freq/kHz (RS41) int jsn_freq; // freq/kHz (SDR) float batt; // battery voltage (V) ui16_t conf_fw; // firmware ui16_t conf_kt; // kill timer (sec) ui16_t conf_bt; // burst timer (sec) ui16_t conf_cd; // kill countdown (sec) (kt or bt) ui8_t conf_bk; // burst kill char rstyp[9]; // RS41-SG, RS41-SGP char rsm[10]; // RSM421 int aux; char xdata[XDATA_LEN+16]; // xdata: aux_str1#aux_str2 ... option_t option; RS_t RS; ecdat_t ecdat; } gpx_t; #define BITS 8 #define HEADLEN 64 #define FRAMESTART ((HEADLEN)/BITS) /* 10 B6 CA 11 22 96 12 F8 */ static char rs41_header[] = "0000100001101101010100111000100001000100011010010100100000011111"; static ui8_t rs41_header_bytes[8] = { 0x86, 0x35, 0xf4, 0x40, 0x93, 0xdf, 0x1a, 0x60}; #define MASK_LEN 64 static ui8_t mask[MASK_LEN] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98, 0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26, 0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1, 0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1, 0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C, 0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61, 0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23, 0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1}; /* LFSR: ab i=8 (mod 64): * m[16+i] = m[i] ^ m[i+2] ^ m[i+4] ^ m[i+6] * ________________3205590EF944C6262160C2EA795D6DA15469470CDCE85CF1 * F776827F0799A22C937C3063F5102E61D0BCB4B606AAF423786E3BAEBF7B4CC196833E51B1490898 */ /* frame[pos] = xframe[pos] ^ mask[pos % MASK_LEN]; */ /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 4800 /* ------------------------------------------------------------------------------------ */ /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ // in : week, gpssec // out: jahr, monat, tag static void Gps2Date(gpx_t *gpx) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = gpx->week * 7 + (gpx->gpssec / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; gpx->tag = J - 2447 * M / 80; J = M / 11; gpx->monat = M + 2 - (12 * J); gpx->jahr = 100 * (C - 49) + Y + J; } /* ------------------------------------------------------------------------------------ */ static int bits2byte(char bits[]) { int i, byteval=0, d=1; for (i = 0; i < 8; i++) { // little endian /* for (i = 7; i >= 0; i--) { // big endian */ if (bits[i] == 1) byteval += d; else if (bits[i] == 0) byteval += 0; else return 0x100; d <<= 1; } return byteval; } /* ------------------------------------------------------------------------------------ */ static ui32_t u4(ui8_t *bytes) { // 32bit unsigned int ui32_t val = 0; memcpy(&val, bytes, 4); return val; } static ui32_t u3(ui8_t *bytes) { // 24bit unsigned int int val24 = 0; val24 = bytes[0] | (bytes[1]<<8) | (bytes[2]<<16); // = memcpy(&val, bytes, 3), val &= 0x00FFFFFF; return val24; } static int i3(ui8_t *bytes) { // 24bit signed int int val = 0, val24 = 0; val = bytes[0] | (bytes[1]<<8) | (bytes[2]<<16); val24 = val & 0xFFFFFF; if (val24 & 0x800000) val24 = val24 - 0x1000000; return val24; } static ui32_t u2(ui8_t *bytes) { // 16bit unsigned int return bytes[0] | (bytes[1]<<8); } static int i2(ui8_t *bytes) { // 16bit signed int //return (i16_t)u2(bytes); int val = bytes[0] | (bytes[1]<<8); if (val & 0x8000) val -= 0x10000; return val; } /* double r8(ui8_t *bytes) { double val = 0; memcpy(&val, bytes, 8); return val; } float r4(ui8_t *bytes) { float val = 0; memcpy(&val, bytes, 4); return val; } */ static int crc16(ui8_t data[], int len) { int crc16poly = 0x1021; int rem = 0xFFFF, i, j; int byte; //if (start+len+2 > FRAME_LEN) return -1; for (i = 0; i < len; i++) { byte = data[i]; rem = rem ^ (byte << 8); for (j = 0; j < 8; j++) { if (rem & 0x8000) { rem = (rem << 1) ^ crc16poly; } else { rem = (rem << 1); } rem &= 0xFFFF; } } return rem; } static int check_CRC(gpx_t *gpx, ui32_t pos, ui32_t pck) { ui32_t crclen = 0, crcdat = 0; // check only pck_type (variable len pcks 0x76, 0x7E) if (((pck>>8) & 0xFF) != gpx->frame[pos]) return -1; crclen = gpx->frame[pos+1]; if (pos + crclen + 4 > FRAME_LEN) return -1; crcdat = u2(gpx->frame+pos+2+crclen); if ( crcdat != crc16(gpx->frame+pos+2, crclen) ) { return 1; // CRC NO } else return 0; // CRC OK } /* GPS chip: ublox UBX-G6010-ST Pos: SubHeader, 1+1 byte (ID+LEN) 0x039: 7928 FrameNumber+SondeID +(0x050: 0732 CalFrames 0x00..0x32) 0x065: 7A2A PTU 0x093: 7C1E GPS1: RXM-RAW (0x02 0x10) Week, TOW, Sats 0x0B5: 7D59 GPS2: RXM-RAW (0x02 0x10) pseudorange, doppler 0x112: 7B15 GPS3: NAV-SOL (0x01 0x06) ECEF-POS, ECEF-VEL 0x12B: 7611 00 0x12B: 7Exx AUX-xdata */ #define crc_FRAME (1<<0) #define xor_FRAME 0x1713 // ^0x6E3B=0x7928 #define pck_FRAME 0x7928 #define pos_FRAME 0x039 #define pos_FrameNb 0x03B // 2 byte #define pos_BattVolts 0x045 // 2 byte #define pos_SondeID 0x03D // 8 byte #define pos_CalData 0x052 // 1 byte, counter 0x00..0x32 #define pos_Calfreq 0x055 // 2 byte, calfr 0x00 #define pos_Calburst 0x05E // 1 byte, calfr 0x02 // ? #define pos_Caltimer 0x05A // 2 byte, calfr 0x02 ? #define pos_CalRSTyp 0x05B // 8 byte, calfr 0x21 (+2 byte in 0x22?) // weitere chars in calfr 0x22/0x23; weitere ID (RSM) #define pos_CalRSM 0x055 // 6 byte, calfr 0x22 #define crc_PTU (1<<1) #define xor_PTU 0xE388 // ^0x99A2=0x0x7A2A #define pck_PTU 0x7A2A // PTU #define pos_PTU 0x065 #define crc_GPS1 (1<<2) #define xor_GPS1 0x9667 // ^0xEA79=0x7C1E #define pck_GPS1 0x7C1E // RXM-RAW (0x02 0x10) #define pos_GPS1 0x093 #define pos_GPSweek 0x095 // 2 byte #define pos_GPSiTOW 0x097 // 4 byte #define pos_satsN 0x09B // 12x2 byte (1: SV, 1: quality,strength) #define crc_GPS2 (1<<3) #define xor_GPS2 0xD7AD // ^0xAAF4=0x7D59 #define pck_GPS2 0x7D59 // RXM-RAW (0x02 0x10) #define pos_GPS2 0x0B5 #define pos_minPR 0x0B7 // 4 byte #define pos_FF 0x0BB // 1 byte #define pos_dataSats 0x0BC // 12x(4+3) byte (4: pseudorange, 3: doppler) #define crc_GPS3 (1<<4) #define xor_GPS3 0xB9FF // ^0xC2EA=0x7B15 #define pck_GPS3 0x7B15 // NAV-SOL (0x01 0x06) #define pos_GPS3 0x112 #define pos_GPSecefX 0x114 // 4 byte #define pos_GPSecefY 0x118 // 4 byte #define pos_GPSecefZ 0x11C // 4 byte #define pos_GPSecefV 0x120 // 3*2 byte #define pos_numSats 0x126 // 1 byte #define pos_sAcc 0x127 // 1 byte #define pos_pDOP 0x128 // 1 byte #define crc_AUX (1<<5) #define pck_AUX 0x7E00 // LEN variable #define pos_AUX 0x12B #define crc_ZERO (1<<6) // LEN variable #define pck_ZERO 0x7600 #define pck_ZEROstd 0x7611 // NDATA std-frm, no aux #define pos_ZEROstd 0x12B // pos_AUX(0) #define pck_SGM_xTU 0x7F1B // temperature/humidity #define pck_SGM_CRYPT 0x80A7 // Packet type for an Encrypted payload /* frame[pos_FRAME-1] == 0x0F: len == NDATA_LEN(320) frame[pos_FRAME-1] == 0xF0: len == FRAME_LEN(518) */ static int frametype(gpx_t *gpx) { // -4..+4: 0xF0 -> -4 , 0x0F -> +4 int i; ui8_t b = gpx->frame[pos_FRAME-1]; int ft = 0; for (i = 0; i < 4; i++) { ft += ((b>>i)&1) - ((b>>(i+4))&1); } return ft; } static int get_FrameNb(gpx_t *gpx, int crc, int ofs) { int i; unsigned byte; ui8_t frnr_bytes[2]; int frnr; for (i = 0; i < 2; i++) { byte = gpx->frame[pos_FrameNb+ofs + i]; frnr_bytes[i] = byte; } frnr = frnr_bytes[0] + (frnr_bytes[1] << 8); gpx->frnr = frnr; // crc check if (crc == 0) { gpx->ecdat.last_frnb = frnr; gpx->ecdat.last_frnb_ts = gpx->ecdat.ts; } return 0; } static int get_BattVolts(gpx_t *gpx, int ofs) { int i; unsigned byte; ui8_t batt_bytes[2]; ui16_t batt_volts; // signed voltage? for (i = 0; i < 2; i++) { byte = gpx->frame[pos_BattVolts+ofs + i]; batt_bytes[i] = byte; } // 2 bytes? V > 25.5 ? batt_volts = batt_bytes[0]; // + (batt_bytes[1] << 8); gpx->batt = batt_volts/10.0; return 0; } static int get_SondeID(gpx_t *gpx, int crc, int ofs) { int i; unsigned byte; char sondeid_bytes[9]; if (crc == 0) { for (i = 0; i < 8; i++) { byte = gpx->frame[pos_SondeID+ofs + i]; //if ((byte < 0x20) || (byte > 0x7E)) return -1; sondeid_bytes[i] = byte; } sondeid_bytes[8] = '\0'; if ( strncmp(gpx->id, sondeid_bytes, 8) != 0 ) { //for (i = 0; i < 51; i++) gpx->calfrchk[i] = 0; memset(gpx->calfrchk, 0, 51); // 0x00..0x32 // reset conf data memset(gpx->rstyp, 0, 9); memset(gpx->rsm, 0, 10); gpx->calconf_complete = 0; gpx->calconf_sent = 0; gpx->freq = 0; gpx->conf_fw = 0; gpx->conf_bt = 0; gpx->conf_bk = 0; gpx->conf_cd = -1; gpx->conf_kt = -1; // don't reset gpx->frame[] ! gpx->jahr = 0; gpx->monat = 0; gpx->tag = 0; gpx->std = 0; gpx->min = 0; gpx->sek = 0.0; gpx->week = 0; gpx->lat = 0.0; gpx->lon = 0.0; gpx->alt = 0.0; gpx->vH = 0.0; gpx->vD = 0.0; gpx->vV = 0.0; gpx->numSV = 0; gpx->T = -273.15f; gpx->RH = -1.0f; gpx->P = -1.0f; gpx->RH2 = -1.0f; // new ID: memcpy(gpx->id, sondeid_bytes, 8); gpx->id[8] = '\0'; gpx->ecdat.last_frnb = 0; } } return 0; } static int get_FrameConf(gpx_t *gpx, int ofs) { int crc, err; ui8_t calfr; int i; crc = check_CRC(gpx, pos_FRAME+ofs, pck_FRAME); if (crc) gpx->crc |= crc_FRAME; err = crc; err |= get_SondeID(gpx, crc, ofs); err |= get_FrameNb(gpx, crc, ofs); err |= get_BattVolts(gpx, ofs); if (crc == 0) { calfr = gpx->frame[pos_CalData+ofs]; if (gpx->calfrchk[calfr] == 0) // const? { // 0x32 not constant for (i = 0; i < 16; i++) { gpx->calibytes[calfr*16 + i] = gpx->frame[pos_CalData+ofs+1+i]; } gpx->calfrchk[calfr] = 1; } gpx->ecdat.last_calfrm = calfr; gpx->ecdat.last_calfrm_ts = gpx->ecdat.ts; if ( !gpx->calconf_complete ) { int sum = 0; for (i = 0; i < 51; i++) { // 0x00..0x32 sum += gpx->calfrchk[i]; } if (sum == 51) { // count all subframes int calconf_dat = gpx->calibytes[0] | (gpx->calibytes[1]<<8); int calconf_crc = crc16(gpx->calibytes+2, 50*16-2); // subframe 0x32 not included (variable) if (calconf_dat == calconf_crc) gpx->calconf_complete = 1; } } } return err; } static int get_CalData(gpx_t *gpx) { int j; memcpy(&(gpx->ptu_Rf1), gpx->calibytes+61, 4); // 0x03*0x10+13 memcpy(&(gpx->ptu_Rf2), gpx->calibytes+65, 4); // 0x04*0x10+ 1 memcpy(gpx->ptu_co1+0, gpx->calibytes+77, 4); // 0x04*0x10+13 memcpy(gpx->ptu_co1+1, gpx->calibytes+81, 4); // 0x05*0x10+ 1 memcpy(gpx->ptu_co1+2, gpx->calibytes+85, 4); // 0x05*0x10+ 5 memcpy(gpx->ptu_calT1+0, gpx->calibytes+89, 4); // 0x05*0x10+ 9 memcpy(gpx->ptu_calT1+1, gpx->calibytes+93, 4); // 0x05*0x10+13 memcpy(gpx->ptu_calT1+2, gpx->calibytes+97, 4); // 0x06*0x10+ 1 // ptu_calT1[3..6] memcpy(gpx->ptu_calH+0, gpx->calibytes+117, 4); // 0x07*0x10+ 5 memcpy(gpx->ptu_calH+1, gpx->calibytes+121, 4); // 0x07*0x10+ 9 memcpy(gpx->ptu_co2+0, gpx->calibytes+293, 4); // 0x12*0x10+ 5 memcpy(gpx->ptu_co2+1, gpx->calibytes+297, 4); // 0x12*0x10+ 9 memcpy(gpx->ptu_co2+2, gpx->calibytes+301, 4); // 0x12*0x10+13 memcpy(gpx->ptu_calT2+0, gpx->calibytes+305, 4); // 0x13*0x10+ 1 memcpy(gpx->ptu_calT2+1, gpx->calibytes+309, 4); // 0x13*0x10+ 5 memcpy(gpx->ptu_calT2+2, gpx->calibytes+313, 4); // 0x13*0x10+ 9 // ptu_calT2[3..6] // cf. DF9DQ memcpy(&(gpx->ptu_Cf1), gpx->calibytes+69, 4); // 0x04*0x10+ 5 memcpy(&(gpx->ptu_Cf2), gpx->calibytes+73, 4); // 0x04*0x10+ 9 for (j = 0; j < 42; j++) { // 0x07*0x10+13 = 0x07D = 125 memcpy(gpx->ptu_mtxH+j, gpx->calibytes+125+4*j, 4); } for (j = 0; j < 3; j++) { // 0x2A*0x10+6 = 0x2A6 = 678 memcpy(gpx->ptu_corHp+j, gpx->calibytes+678+4*j, 4); } for (j = 0; j < 12; j++) { // 0x2B*0x10+A = 0x2BA = 698 memcpy(gpx->ptu_corHt+j, gpx->calibytes+698+4*j, 4); } // cf. DF9DQ or stsst/RS-fork memcpy(gpx->ptu_calP+0, gpx->calibytes+606, 4); // 0x25*0x10+14 = 0x25E memcpy(gpx->ptu_calP+4, gpx->calibytes+610, 4); // .. memcpy(gpx->ptu_calP+8, gpx->calibytes+614, 4); memcpy(gpx->ptu_calP+12, gpx->calibytes+618, 4); memcpy(gpx->ptu_calP+16, gpx->calibytes+622, 4); memcpy(gpx->ptu_calP+20, gpx->calibytes+626, 4); memcpy(gpx->ptu_calP+24, gpx->calibytes+630, 4); memcpy(gpx->ptu_calP+1, gpx->calibytes+634, 4); memcpy(gpx->ptu_calP+5, gpx->calibytes+638, 4); memcpy(gpx->ptu_calP+9, gpx->calibytes+642, 4); memcpy(gpx->ptu_calP+13, gpx->calibytes+646, 4); memcpy(gpx->ptu_calP+2, gpx->calibytes+650, 4); memcpy(gpx->ptu_calP+6, gpx->calibytes+654, 4); memcpy(gpx->ptu_calP+10, gpx->calibytes+658, 4); memcpy(gpx->ptu_calP+14, gpx->calibytes+662, 4); memcpy(gpx->ptu_calP+3, gpx->calibytes+666, 4); memcpy(gpx->ptu_calP+7, gpx->calibytes+670, 4); // .. memcpy(gpx->ptu_calP+11, gpx->calibytes+674, 4); // 0x2A*0x10+ 2 return 0; } // temperature, platinum resistor // T-sensor: gpx->ptu_co1 , gpx->ptu_calT1 // T_RH-sensor: gpx->ptu_co2 , gpx->ptu_calT2 static float get_T(gpx_t *gpx, ui32_t f, ui32_t f1, ui32_t f2, float *ptu_co, float *ptu_calT) { float *p = ptu_co; float *c = ptu_calT; float g = (float)(f2-f1)/(gpx->ptu_Rf2-gpx->ptu_Rf1), // gain Rb = (f1*gpx->ptu_Rf2-f2*gpx->ptu_Rf1)/(float)(f2-f1), // ofs Rc = f/g - Rb, R = Rc * c[0], T = (p[0] + p[1]*R + p[2]*R*R + c[1])*(1.0 + c[2]); return T; // [Celsius] } // rel.hum., capacitor // (data:) ftp://ftp-cdc.dwd.de/climate_environment/CDC/observations_germany/radiosondes/ // (diffAlt: Ellipsoid-Geoid) // (note: humidity sensor has significant time-lag at low temperatures) static float get_RHemp(gpx_t *gpx, ui32_t f, ui32_t f1, ui32_t f2, float T) { float a0 = 7.5; // empirical float a1 = 350.0/gpx->ptu_calH[0]; // empirical float fh = (f-f1)/(float)(f2-f1); float rh = 100.0 * ( a1*fh - a0 ); float T0 = 0.0, T1 = -20.0, T2 = -40.0; // T/C v0.4 rh += T0 - T/5.5; // empir. temperature compensation if (T < T1) rh *= 1.0 + (T1-T)/100.0; // empir. temperature compensation if (T < T2) rh *= 1.0 + (T2-T)/120.0; // empir. temperature compensation if (rh < 0.0) rh = 0.0; if (rh > 100.0) rh = 100.0; if (T < -273.0) rh = -1.0; return rh; } // --------------------------------------------------------------------------------------- // // cf. github DF9DQ // water vapor saturation pressure (Hyland and Wexler) static float vaporSatP(float Tc) { double T = Tc + 273.15; // Apply some correction magic // T = -0.4931358 + (1.0 + 4.61e-3) * T - 1.3746454e-5 * T*T + 1.2743214e-8 * T*T*T; // H+W equation double p = expf(-5800.2206 / T +1.3914993 +6.5459673 * log(T) -4.8640239e-2 * T +4.1764768e-5 * T*T -1.4452093e-8 * T*T*T ); return (float)p; // [Pa] } // cf. github DF9DQ static float get_RH2adv(gpx_t *gpx, ui32_t f, ui32_t f1, ui32_t f2, float T, float TH, float P) { float rh = 0.0; float cfh = (f-f1)/(float)(f2-f1); float cap = gpx->ptu_Cf1+(gpx->ptu_Cf2-gpx->ptu_Cf1)*cfh; double Cp = (cap / gpx->ptu_calH[0] - 1.0) * gpx->ptu_calH[1]; double Trh_20_180 = (TH - 20.0) / 180.0; double _rh = 0.0; double aj = 1.0; double bk = 1.0, b[6]; int j, k; bk = 1.0; for (k = 0; k < 6; k++) { b[k] = bk; // Tp^k bk *= Trh_20_180; } if (P > 0.0) // in particular if P<200hPa , T<-40 { double _p = P / 1000.0; // bar double _cpj = 1.0; double corrCp = 0.0; double bt, bp[3]; for (j = 0; j < 3; j++) { bp[j] = gpx->ptu_corHp[j] * (_p/(1.0 + gpx->ptu_corHp[j]*_p) - _cpj/(1.0 + gpx->ptu_corHp[j])); _cpj *= Cp; // Cp^j } corrCp = 0.0; for (j = 0; j < 3; j++) { bt = 0.0; for (k = 0; k < 4; k++) { bt += gpx->ptu_corHt[4*j+k] * b[k]; } corrCp += bp[j] * bt; } Cp -= corrCp; } aj = 1.0; for (j = 0; j < 7; j++) { for (k = 0; k < 6; k++) { _rh += aj * b[k] * gpx->ptu_mtxH[6*j+k]; } aj *= Cp; } if ( P <= 0.0 ) { // empirical correction float T2 = -40; if (T < T2) { _rh += (T-T2)/12.0; } } rh = _rh * vaporSatP(TH)/vaporSatP(T); if (rh < 0.0) rh = 0.0; if (rh > 100.0) rh = 100.0; return rh; } // // cf. github DF9DQ or stsst/RS-fork static float get_P(gpx_t *gpx, ui32_t f, ui32_t f1, ui32_t f2, int fx) { double p = 0.0; double a0, a1, a0j, a1k; int j, k; if (f1 == f2 || f1 == f) return 0.0; a0 = gpx->ptu_calP[24] / ((float)(f - f1) / (float)(f2 - f1)); a1 = fx * 0.01; a0j = 1.0; for (j = 0; j < 6; j++) { a1k = 1.0; for (k = 0; k < 4; k++) { p += a0j * a1k * gpx->ptu_calP[j*4+k]; a1k *= a1; } a0j *= a0; } return (float)p; } // --------------------------------------------------------------------------------------- // // barometric formula https://en.wikipedia.org/wiki/Barometric_formula static float Ph(float h) { double Pb, Tb, Lb, hb; //double RgM = 8.31446/(9.80665*0.0289644); double gMR = 9.80665*0.0289644/8.31446; float P = 0.0; if (h > 32000.0) { //P < 8.6802 Pb = 8.6802; Tb = 228.65; Lb = 0.0028; hb = 32000.0; } else if (h > 20000.0) { // P < 54.7489 (&& P >= 8.6802) Pb = 54.7489; Tb = 216.65; Lb = 0.001; hb = 20000.0; } else if (h > 11000.0) { // P < 226.321 (&& P >= 54.7489) Pb = 226.321; Tb = 216.65; Lb = 0.0; hb = 11000.0; } else { // P >= 226.321 Pb = 1013.25; Tb = 288.15; Lb = -0.0065; hb = 0.0; } //if (Lb == 0.0) altP = -RgM*Tb * log(P/Pb) + hb; //else altP = Tb/Lb * (pow(P/Pb, -RgM*Lb)-1.0) + hb; if (Lb == 0.0) P = Pb * exp( -gMR*(h-hb)/Tb ); else P = Pb * pow( 1.0+Lb*(h-hb)/Tb , -gMR/Lb); return P; } static int get_PTU(gpx_t *gpx, int ofs, int pck, int valid_alt) { int err=0, i; int bR, bc1, bT1, bc2, bT2; int bH; int bH2; int bP; ui32_t meas[12]; float Tc = -273.15; float TH = -273.15; float RH = -1.0; float RH2 = -1.0; float P = -1.0; get_CalData(gpx); err = check_CRC(gpx, pos_PTU+ofs, pck); if (err) gpx->crc |= crc_PTU; if (err == 0) { // 0x7A2A: 16 byte (P)TU // 0x7F1B: 12 byte _TU for (i = 0; i < 12; i++) { meas[i] = u3(gpx->frame+pos_PTU+ofs+2+3*i); } bR = gpx->calfrchk[0x03] && gpx->calfrchk[0x04]; bc1 = gpx->calfrchk[0x04] && gpx->calfrchk[0x05]; bT1 = gpx->calfrchk[0x05] && gpx->calfrchk[0x06]; bc2 = gpx->calfrchk[0x12] && gpx->calfrchk[0x13]; bT2 = gpx->calfrchk[0x13]; bH = gpx->calfrchk[0x07]; bH2 = gpx->calfrchk[0x07] && gpx->calfrchk[0x08] && gpx->calfrchk[0x09] && gpx->calfrchk[0x0A] && gpx->calfrchk[0x0B] && gpx->calfrchk[0x0C] && gpx->calfrchk[0x0D] && gpx->calfrchk[0x0E] && gpx->calfrchk[0x0F] && gpx->calfrchk[0x10] && gpx->calfrchk[0x11] && gpx->calfrchk[0x12] && gpx->calfrchk[0x2A] && gpx->calfrchk[0x2B] && gpx->calfrchk[0x2C] && gpx->calfrchk[0x2D] && gpx->calfrchk[0x2E]; bP = gpx->calfrchk[0x21] && gpx->calibytes[0x21F] == 'P' && gpx->calfrchk[0x25] && gpx->calfrchk[0x26] && gpx->calfrchk[0x27] && gpx->calfrchk[0x28] && gpx->calfrchk[0x29] && gpx->calfrchk[0x2A]; if (bR && bc1 && bT1) { Tc = get_T(gpx, meas[0], meas[1], meas[2], gpx->ptu_co1, gpx->ptu_calT1); } gpx->T = Tc; if (bR && bc2 && bT2) { TH = get_T(gpx, meas[6], meas[7], meas[8], gpx->ptu_co2, gpx->ptu_calT2); } gpx->TH = TH; if (bH && Tc > -273.0) { RH = get_RHemp(gpx, meas[3], meas[4], meas[5], Tc); // TH, TH-Tc (sensorT - T) } gpx->RH = RH; // cf. DF9DQ, stsst/RS-fork if (bP) { P = get_P(gpx, meas[9], meas[10], meas[11], i2(gpx->frame+pos_PTU+ofs+2+38)); } gpx->P = P; if (gpx->option.ptu == 2) { float _P = -1.0; if (bP) _P = P; else { // approx if (valid_alt > 0) _P = Ph(gpx->alt); } if (bH && bH2 && Tc > -273.0 && TH > -273.0) { RH2 = get_RH2adv(gpx, meas[3], meas[4], meas[5], Tc, TH, _P); } } gpx->RH2 = RH2; if (gpx->option.vbs == 4 && (gpx->crc & (crc_PTU | crc_GPS3))==0) { printf(" h: %8.2f # ", gpx->alt); // crc_GPS3 ? printf("1: %8d %8d %8d", meas[0], meas[1], meas[2]); printf(" # "); printf("2: %8d %8d %8d", meas[3], meas[4], meas[5]); printf(" # "); printf("3: %8d %8d %8d", meas[6], meas[7], meas[8]); printf(" # "); if (0 && Tc > -273.0 && RH > -0.5) { printf(" "); printf(" Tc:%.2f ", Tc); printf(" RH:%.1f ", RH); printf(" TH:%.2f ", TH); } printf("\n"); //if (gpx->alt > -400.0) { printf(" %9.2f ; %6.1f ; %6.1f ", gpx->alt, gpx->ptu_Rf1, gpx->ptu_Rf2); printf("; %10.6f ; %10.6f ; %10.6f ", gpx->ptu_calT1[0], gpx->ptu_calT1[1], gpx->ptu_calT1[2]); //printf("; %8d ; %8d ; %8d ", meas[0], meas[1], meas[2]); printf("; %10.6f ; %10.6f ", gpx->ptu_calH[0], gpx->ptu_calH[1]); //printf("; %8d ; %8d ; %8d ", meas[3], meas[4], meas[5]); printf("; %10.6f ; %10.6f ; %10.6f ", gpx->ptu_calT2[0], gpx->ptu_calT2[1], gpx->ptu_calT2[2]); //printf("; %8d ; %8d ; %8d" , meas[6], meas[7], meas[8]); printf("\n"); } } } return err; } static int get_GPSweek(gpx_t *gpx, int ofs) { int i; unsigned byte; ui8_t gpsweek_bytes[2]; int gpsweek; for (i = 0; i < 2; i++) { byte = gpx->frame[pos_GPSweek+ofs + i]; gpsweek_bytes[i] = byte; } gpsweek = gpsweek_bytes[0] + (gpsweek_bytes[1] << 8); //if (gpsweek < 0) { gpx->week = -1; return -1; } // (short int) gpx->week = gpsweek; return 0; } //char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; static char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; static int get_GPStime(gpx_t *gpx, int ofs) { int i; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime = 0, // 32bit day; int ms; for (i = 0; i < 4; i++) { byte = gpx->frame[pos_GPSiTOW+ofs + i]; gpstime_bytes[i] = byte; } memcpy(&gpstime, gpstime_bytes, 4); gpx->tow_ms = gpstime; ms = gpstime % 1000; gpstime /= 1000; gpx->gpssec = gpstime; day = (gpstime / (24 * 3600)) % 7; //if ((day < 0) || (day > 6)) return -1; // besser CRC-check gpstime %= (24*3600); gpx->wday = day; gpx->std = gpstime / 3600; gpx->min = (gpstime % 3600) / 60; gpx->sek = gpstime % 60 + ms/1000.0; return 0; } static int get_GPS1(gpx_t *gpx, int ofs) { int err=0; // gpx->frame[pos_GPS1+1] != (pck_GPS1 & 0xFF) ? err = check_CRC(gpx, pos_GPS1+ofs, pck_GPS1); if (err) { gpx->crc |= crc_GPS1; // reset GPS1-data (json) gpx->jahr = 0; gpx->monat = 0; gpx->tag = 0; gpx->std = 0; gpx->min = 0; gpx->sek = 0.0; return -1; } err |= get_GPSweek(gpx, ofs); // no plausibility-check err |= get_GPStime(gpx, ofs); // no plausibility-check return err; } static int get_GPS2(gpx_t *gpx, int ofs) { int err=0; // gpx->frame[pos_GPS2+1] != (pck_GPS2 & 0xFF) ? err = check_CRC(gpx, pos_GPS2+ofs, pck_GPS2); if (err) gpx->crc |= crc_GPS2; return err; } // WGS84/GRS80 Ellipsoid #define EARTH_a 6378137.0 #define EARTH_b 6356752.31424518 #define EARTH_a2_b2 (EARTH_a*EARTH_a - EARTH_b*EARTH_b) const double a = EARTH_a, b = EARTH_b, a_b = EARTH_a2_b2, e2 = EARTH_a2_b2 / (EARTH_a*EARTH_a), ee2 = EARTH_a2_b2 / (EARTH_b*EARTH_b); static void ecef2elli(double X[], double *lat, double *lon, double *alt) { double phi, lam, R, p, t; lam = atan2( X[1] , X[0] ); p = sqrt( X[0]*X[0] + X[1]*X[1] ); t = atan2( X[2]*a , p*b ); phi = atan2( X[2] + ee2 * b * sin(t)*sin(t)*sin(t) , p - e2 * a * cos(t)*cos(t)*cos(t) ); R = a / sqrt( 1 - e2*sin(phi)*sin(phi) ); *alt = p / cos(phi) - R; *lat = phi*180/M_PI; *lon = lam*180/M_PI; } static int get_GPSkoord(gpx_t *gpx, int ofs) { int i, k; unsigned byte; ui8_t XYZ_bytes[4]; int XYZ; // 32bit double X[3], lat, lon, alt; ui8_t gpsVel_bytes[2]; short vel16; // 16bit double V[3]; double phi, lam, dir; double vN; double vE; double vU; for (k = 0; k < 3; k++) { for (i = 0; i < 4; i++) { byte = gpx->frame[pos_GPSecefX+ofs + 4*k + i]; XYZ_bytes[i] = byte; } memcpy(&XYZ, XYZ_bytes, 4); X[k] = XYZ / 100.0; for (i = 0; i < 2; i++) { byte = gpx->frame[pos_GPSecefV+ofs + 2*k + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8; V[k] = vel16 / 100.0; } // ECEF-Position ecef2elli(X, &lat, &lon, &alt); gpx->lat = lat; gpx->lon = lon; gpx->alt = alt; if ((alt < -1000) || (alt > 80000)) return -3; // plausibility-check: altitude, if ecef=(0,0,0) // ECEF-Velocities // ECEF-Vel -> NorthEastUp phi = lat*M_PI/180.0; lam = lon*M_PI/180.0; vN = -V[0]*sin(phi)*cos(lam) - V[1]*sin(phi)*sin(lam) + V[2]*cos(phi); vE = -V[0]*sin(lam) + V[1]*cos(lam); vU = V[0]*cos(phi)*cos(lam) + V[1]*cos(phi)*sin(lam) + V[2]*sin(phi); // NEU -> HorDirVer gpx->vH = sqrt(vN*vN+vE*vE); /* double alpha; alpha = atan2(gpx->vN, gpx->vE)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts) dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t) gpx->vD2 = dir; */ dir = atan2(vE, vN) * 180 / M_PI; if (dir < 0) dir += 360; gpx->vD = dir; gpx->vV = vU; gpx->numSV = gpx->frame[pos_numSats+ofs]; return 0; } static int get_GPS3(gpx_t *gpx, int ofs) { int err=0; // gpx->frame[pos_GPS3+1] != (pck_GPS3 & 0xFF) ? err = check_CRC(gpx, pos_GPS3+ofs, pck_GPS3); if (err) { gpx->crc |= crc_GPS3; // reset GPS3-data (json) gpx->lat = 0.0; gpx->lon = 0.0; gpx->alt = 0.0; gpx->vH = 0.0; gpx->vD = 0.0; gpx->vV = 0.0; gpx->numSV = 0; return -1; } err |= get_GPSkoord(gpx, ofs); // plausibility-check: altitude, if ecef=(0,0,0) return err; } static int hex2uint(char *str, int nibs) { int i; int erg = 0; int h = 0; if (nibs > 7) return -2; for (i = 0; i < nibs; i++) { // MSB i.e. most significant nibble first if (str[i] >= '0' && str[i] <= '9') h = str[i]-'0'; else if (str[i] >= 'a' && str[i] <= 'f') h = str[i]-'a'+0xA; else if (str[i] >= 'A' && str[i] <= 'F') h = str[i]-'A'+0xA; else return -1; erg = (erg << 4) | (h & 0xF); } return erg; } static int prn_aux_IDx01(char *xdata) { // V7 ECC (Electrochemical Concentration Cell) Ozonesonde // https://gml.noaa.gov/aftp/user/jordan/iMet%20Radiosonde%20Protocol.pdf // https://harbor.weber.edu/Hardware/Ozonesonde/ECC_Ozonesonde-1.pdf // ID=0x01: ECC Ozonesonde // N=2*8 nibs (1byte = 2nibs) (MSB) // 0 2 u8 Instrument_type = 0x01 (ID) // 2 2 u8 Instrument_number // 4 4 u16 Icell, uA (I = n/1000) // 8 4 i16 Tpump, C (T = n/100) // 12 2 u8 Ipump, mA // 14 2 u8 Vbat, (V = n/10) // int val; i16_t Tpump; ui16_t Icell; ui8_t InstrNum, Ipump, Vbat; char *px = xdata; int N = 2*8; if (*px) { if (strncmp(px, "01", 2) != 0) { px = strstr(xdata, "#01"); if (px == NULL) return -1; else px += 1; } if (strlen(px) < N) return -1; fprintf(stdout, " ID=0x01 ECC "); val = hex2uint(px+ 2, 2); if (val < 0) return -1; InstrNum = val & 0xFF; val = hex2uint(px+ 4, 4); if (val < 0) return -1; Icell = val & 0xFFFF; // u16 val = hex2uint(px+ 8, 4); if (val < 0) return -1; Tpump = val & 0xFFFF; // i16 val = hex2uint(px+12, 2); if (val < 0) return -1; Ipump = val & 0xFF; // u8 val = hex2uint(px+14, 2); if (val < 0) return -1; Vbat = val & 0xFF; // u8 fprintf(stdout, " No.%d ", InstrNum); fprintf(stdout, " Icell:%.3fuA ", Icell/1000.0); fprintf(stdout, " Tpump:%.2fC ", Tpump/100.0); fprintf(stdout, " Ipump:%dmA ", Ipump); fprintf(stdout, " Vbat:%.1fV ", Vbat/10.0); } else { return -2; } return 0; } static int prn_aux_IDx05(char *xdata) { // OIF411 // "Ozone Sounding with Vaisala Radiosonde RS41" user's guide M211486EN // // ID=0x05: OIF411 // pos nibs (MSB) // 0 2 u8 Instrument_type = 0x05 (ID) // 2 2 u8 Instrument_number // Measurement Data, N=2*10 // 4 4 i16 Tpump, C (T = n/100) // 8 5 u20 Icell, uA (I = n/10000) // 13 2 u8 Vbat, (V = n/10) // 15 3 u12 Ipump, mA // 18 2 u8 Vext, (V = n/10) // ID Data, N=2*10+1 // 4 8 char OIF411 Serial // 12 4 u16 Diagnostics Word // 16 2?4 u16? SW version (n/100) // 20 1 char I // char *px = xdata; int N = 2*10; int val; ui8_t InstrNum; if (*px) { if (strncmp(px, "05", 2) != 0) { px = strstr(xdata, "#05"); if (px == NULL) return -1; else px += 1; } if (strlen(px) < N) return -1; fprintf(stdout, " ID=0x05 OIF411 "); val = hex2uint(px+ 2, 2); if (val < 0) return -1; InstrNum = val & 0xFF; fprintf(stdout, " No.%d ", InstrNum); if (px[N] == 'I') { ui16_t dw; ui16_t sw; char sn[9]; // 5.2 ID Data // N += 1; strncpy(sn, px+4, 8); sn[8] = '\0'; val = hex2uint(px+12, 4); if (val < 0) return -1; dw = val & 0xFFFF; // i16 val = hex2uint(px+16, 4); if (val < 0) return -1; sw = val & 0xFFFF; // u8 fprintf(stdout, " SN:%s ", sn); fprintf(stdout, " DW:%04X ", dw); fprintf(stdout, " SW:%.2f ", sw/100.0); // Diagnostics Word dw // 0000 = "Default value, no diagnostics bits active" // 0004 = "Ozone pump temperature below -5C" // 0400 = "Ozone pump battery voltage (+VBatt) is not connected to OIF411" // 0404 = 0004 | 0400 } else { ui32_t Icell; ui16_t Ipump; i16_t Tpump; ui8_t InstrNum, Vbat, Vext; // 5.1 Measurement Data // val = hex2uint(px+ 4, 4); if (val < 0) return -1; Tpump = val & 0xFFFF; // i16 val = hex2uint(px+ 8, 5); if (val < 0) return -1; Icell = val & 0xFFFFF; // u20 val = hex2uint(px+13, 2); if (val < 0) return -1; Vbat = val & 0xFF; // u8 val = hex2uint(px+15, 3); if (val < 0) return -1; Ipump = val & 0xFFF; // u12 val = hex2uint(px+18, 2); if (val < 0) return -1; Vext = val & 0xFF; // u8 fprintf(stdout, " Tpump:%.2fC ", Tpump/100.0); fprintf(stdout, " Icell:%.4fuA ", Icell/10000.0); fprintf(stdout, " Vbat:%.1fV ", Vbat/10.0); fprintf(stdout, " Ipump:%dmA ", Ipump); fprintf(stdout, " Vext:%.1fV ", Vext/10.0); } } else { return -2; } return 0; } static int prn_aux_IDx08(char *xdata) { // CFH Cryogenic Frost Point Hygrometer // ID=0x08: CFH // N=2*12 nibs // 0 2 u8 Instrument_type = 0x08 (ID) // 2 2 u8 Instrument_number // 4 6 Tmir, Mirror Temperature // 10 6 Vopt, Optics Voltage // 16 4 Topt, Optics Temperature // 20 4 Vbat, CFH Battery // char *px = xdata; int N = 2*12; int val; ui8_t InstrNum; if (*px) { if (strncmp(px, "08", 2) != 0) { px = strstr(xdata, "#08"); if (px == NULL) return -1; else px += 1; } if (strlen(px) < N) return -1; fprintf(stdout, " ID=0x08 CFH "); val = hex2uint(px+ 2, 2); if (val < 0) return -1; InstrNum = val & 0xFF; fprintf(stdout, " No.%d ", InstrNum); fprintf(stdout, " Tmir:0x%.6s ", px+4); fprintf(stdout, " Vopt:0x%.6s ", px+10); fprintf(stdout, " Topt:0x%.4s ", px+16); fprintf(stdout, " Vbat:0x%.4s ", px+20); } else { return -2; } return 0; } static int get_Aux(gpx_t *gpx, int out, int pos) { // // "Ozone Sounding with Vaisala Radiosonde RS41" user's guide M211486EN // int auxlen, auxcrc, count7E, pos7E; int i, n; char *paux; n = 0; count7E = 0; pos7E = 0; //if (pos != pos_AUX) ; gpx->xdata[0] = '\0'; if (frametype(gpx) <= 0) // pos7E == pos7611, 0x7E^0x76=0x08 ... { // 7Exx: xdata while ( pos < FRAME_LEN && gpx->frame[pos] == 0x7E ) { auxlen = gpx->frame[pos+1]; auxcrc = gpx->frame[pos+2+auxlen] | (gpx->frame[pos+2+auxlen+1]<<8); if ( pos + auxlen + 4 <= FRAME_LEN && auxcrc == crc16(gpx->frame+pos+2, auxlen) ) { if (count7E == 0) { if (out) fprintf(stdout, "\n # xdata = "); } else { if (out) fprintf(stdout, " # "); gpx->xdata[n++] = '#'; // aux separator } //fprintf(stdout, " # %02x : ", gpx->frame[pos7E+2]); for (i = 1; i < auxlen; i++) { ui8_t c = gpx->frame[pos+2+i]; // (char) or better < 0x7F if (c > 0x1E && c < 0x7F) { // ASCII-only if (out) fprintf(stdout, "%c", c); gpx->xdata[n++] = c; } } count7E++; pos7E = pos; pos += 2+auxlen+2; } else { pos = FRAME_LEN; gpx->crc |= crc_AUX; } } } gpx->xdata[n] = '\0'; // decode OIF411 xdata paux = gpx->xdata; if (out && gpx->option.aux && *paux) { int val; ui8_t ID; for (i = 0; i < count7E; i++) { if (paux > gpx->xdata) { //while (paux < (gpx->xdata)+n && *paux != '#') paux++; while (*paux && *paux != '#') paux++; paux++; } if (strlen(paux) > 2) { val = hex2uint(paux, 2); if (val < 0) { paux += 2; continue; } ID = val & 0xFF; switch (ID) { case 0x01: fprintf(stdout, "\n"); prn_aux_IDx01(paux); break; case 0x05: fprintf(stdout, "\n"); prn_aux_IDx05(paux); break; case 0x08: fprintf(stdout, "\n"); prn_aux_IDx08(paux); break; } paux++; } else break; } if ( !gpx->option.jsn ) fprintf(stdout, "\n"); } i = check_CRC(gpx, pos, pck_ZERO); // 0x76xx: 00-padding block if (i) gpx->crc |= crc_ZERO; return pos7E; // count7E } static int get_Calconf(gpx_t *gpx, int out, int ofs) { int i; unsigned byte; ui8_t calfr = 0; ui16_t fw = 0; int freq = 0, f0 = 0, f1 = 0; char sondetyp[9]; char rsmtyp[10]; int err = 0; gpx->calconf_subfrm = gpx->frame+pos_CalData+ofs; byte = gpx->frame[pos_CalData+ofs]; calfr = byte; err = check_CRC(gpx, pos_FRAME+ofs, pck_FRAME); if (out && gpx->option.vbs == 3) { fprintf(stdout, "\n"); // fflush(stdout); fprintf(stdout, "[%5d] ", gpx->frnr); fprintf(stdout, " 0x%02x: ", calfr); for (i = 0; i < 16; i++) { byte = gpx->frame[pos_CalData+ofs+1+i]; fprintf(stdout, "%02x ", byte); } /* if (err == 0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); */ fprintf(stdout, " "); } if (err == 0) { if (calfr == 0x00) { byte = gpx->frame[pos_Calfreq+ofs] & 0xC0; // erstmal nur oberste beiden bits f0 = (byte * 10) / 64; // 0x80 -> 1/2, 0x40 -> 1/4 ; dann mal 40 byte = gpx->frame[pos_Calfreq+ofs+1]; f1 = 40 * byte; freq = 400000 + f1+f0; // kHz; if (out && gpx->option.vbs) fprintf(stdout, ": fq %d ", freq); gpx->freq = freq; } if (calfr == 0x01) { fw = gpx->frame[pos_CalData+ofs+6] | (gpx->frame[pos_CalData+ofs+7]<<8); if (out && gpx->option.vbs) fprintf(stdout, ": fw 0x%04x ", fw); gpx->conf_fw = fw; } if (calfr == 0x02) { // 0x5E, 0x5A..0x5B ui8_t bk = gpx->frame[pos_Calburst+ofs]; // fw >= 0x4ef5, burst-killtimer in 0x31 relevant ui16_t kt = gpx->frame[pos_CalData+ofs+8] + (gpx->frame[pos_CalData+ofs+9] << 8); // killtimer (short?) if (out && gpx->option.vbs) fprintf(stdout, ": BK %02X ", bk); if (out && gpx->option.vbs && kt != 0xFFFF ) fprintf(stdout, ": kt %.1fmin ", kt/60.0); gpx->conf_bk = bk; gpx->conf_kt = kt; } if (calfr == 0x31) { // 0x59..0x5A ui16_t bt = gpx->frame[pos_CalData+ofs+7] + (gpx->frame[pos_CalData+ofs+8] << 8); // burst timer (short?) // fw >= 0x4ef5: default=[88 77]=0x7788sec=510min if (out && bt != 0x0000 && (gpx->option.vbs == 3 || gpx->option.vbs && gpx->conf_bk) ) fprintf(stdout, ": bt %.1fmin ", bt/60.0); gpx->conf_bt = bt; } if (calfr == 0x32) { ui16_t cd = gpx->frame[pos_CalData+ofs+1] + (gpx->frame[pos_CalData+ofs+2] << 8); // countdown (bt or kt) (short?) if (out && cd != 0xFFFF && (gpx->option.vbs == 3 || gpx->option.vbs && (gpx->conf_bk || gpx->conf_kt != 0xFFFF)) ) fprintf(stdout, ": cd %.1fmin ", cd/60.0); gpx->conf_cd = cd; // (short/i16_t) ? } if (calfr == 0x21) { // ... eventuell noch 2 bytes in 0x22 for (i = 0; i < 9; i++) sondetyp[i] = 0; for (i = 0; i < 8; i++) { byte = gpx->frame[pos_CalRSTyp+ofs + i]; if ((byte >= 0x20) && (byte < 0x7F)) sondetyp[i] = byte; else if (byte == 0x00) sondetyp[i] = '\0'; } if (out && gpx->option.vbs) fprintf(stdout, ": %s ", sondetyp); strcpy(gpx->rstyp, sondetyp); if (out && gpx->option.vbs == 3) { // Stationsdruck QFE float qfe1 = 0.0, qfe2 = 0.0; memcpy(&qfe1, gpx->frame+pos_CalData+1, 4); memcpy(&qfe2, gpx->frame+pos_CalData+5, 4); if (qfe1 > 0.0 || qfe2 > 0.0) { fprintf(stdout, " "); if (qfe1 > 0.0) fprintf(stdout, "QFE1:%.1fhPa ", qfe1); if (qfe2 > 0.0) fprintf(stdout, "QFE2:%.1fhPa ", qfe2); } } } if (calfr == 0x22) { for (i = 0; i < 10; i++) rsmtyp[i] = 0; for (i = 0; i < 8; i++) { byte = gpx->frame[pos_CalRSM+ofs + i]; if ((byte >= 0x20) && (byte < 0x7F)) rsmtyp[i] = byte; else /*if (byte == 0x00)*/ rsmtyp[i] = '\0'; } if (out && gpx->option.vbs) fprintf(stdout, ": %s ", rsmtyp); strcpy(gpx->rsm, rsmtyp); } } return 0; } /* ------------------------------------------------------------------------------------ */ static int set_bytes(gpx_t *gpx, int pos, ui8_t *src, int len, int subcw, int *pset) { int rem = 0; // cw1: rem=0 , cw2: rem=1 ( pos >= msgpos) int i; if (subcw == 2) rem = 1; else rem = 0; for (i = 0; i < len; i++) { if ( (pos+i) % 2 == rem) { gpx->frame[pos+i] = src[i]; *pset = pos+i; pset++; } } return 0; } #define N_idx_fixed 5 static int idx_fixed[N_idx_fixed] = { pos_FRAME, pos_PTU, pos_GPS1, pos_GPS2, pos_GPS3 }; static int inFixed(gpx_t *gpx, int idx, int *frmset, int setcnt) { int j; for (j = 0; j < N_idx_fixed; j++) { if (idx == idx_fixed[j] || idx == idx_fixed[j]+1) return 1; } if (frametype(gpx) >= -2) { if (idx >= pos_ZEROstd && idx < NDATA_LEN) return 1; } for (j = 0; j < setcnt; j++) { if (idx == frmset[j]) return 1; } return 0; } #define rs_N 255 #define rs_R 24 #define rs_K (rs_N-rs_R) static int rs41_ecc(gpx_t *gpx, int frmlen) { // richtige framelen wichtig fuer 0-padding int i, j, k, leak, ret = 0; int errors1, errors2; ui8_t cw1[rs_N], cw2[rs_N]; ui8_t err_pos1[rs_R], err_pos2[rs_R], err_val1[rs_R], err_val2[rs_R]; ui8_t era_pos[rs_R]; ui8_t Era_max = 12; // iteration depth 2..255 (2 erasures for 1 error) int frmset[FRAME_LEN]; int setcnt = 0; memset(cw1, 0, rs_N); memset(cw2, 0, rs_N); if (frmlen > FRAME_LEN) frmlen = FRAME_LEN; //cfg_rs41.frmlen = frmlen; //cfg_rs41.msglen = (frmlen-56)/2; // msgpos=56; leak = frmlen % 2; for (i = frmlen; i < FRAME_LEN; i++) gpx->frame[i] = 0; // FRAME_LEN-HDR = 510 = 2*255 for (i = 0; i < rs_R; i++) cw1[i] = gpx->frame[cfg_rs41.parpos+i ]; for (i = 0; i < rs_R; i++) cw2[i] = gpx->frame[cfg_rs41.parpos+i+rs_R]; for (i = 0; i < rs_K; i++) cw1[rs_R+i] = gpx->frame[cfg_rs41.msgpos+2*i ]; for (i = 0; i < rs_K; i++) cw2[rs_R+i] = gpx->frame[cfg_rs41.msgpos+2*i+1]; errors1 = rs_decode(&gpx->RS, cw1, err_pos1, err_val1); errors2 = rs_decode(&gpx->RS, cw2, err_pos2, err_val2); if (gpx->option.ecc >= 2 && (errors1 < 0 || errors2 < 0)) { // 2nd pass: set packet-IDs gpx->frame[pos_FRAME] = (pck_FRAME>>8)&0xFF; gpx->frame[pos_FRAME+1] = pck_FRAME&0xFF; gpx->frame[pos_PTU] = (pck_PTU >>8)&0xFF; gpx->frame[pos_PTU +1] = pck_PTU &0xFF; gpx->frame[pos_GPS1] = (pck_GPS1 >>8)&0xFF; gpx->frame[pos_GPS1 +1] = pck_GPS1 &0xFF; gpx->frame[pos_GPS2] = (pck_GPS2 >>8)&0xFF; gpx->frame[pos_GPS2 +1] = pck_GPS2 &0xFF; gpx->frame[pos_GPS3] = (pck_GPS3 >>8)&0xFF; gpx->frame[pos_GPS3 +1] = pck_GPS3 &0xFF; // AUX-frames mit vielen Fehlern besser mit 00 auffuellen // std-O3-AUX-frame: NDATA+7 if (frametype(gpx) < -2) { // ft >= 0: NDATA_LEN , ft < 0: FRAME_LEN for (i = NDATA_LEN + 7; i < FRAME_LEN-2; i++) gpx->frame[i] = 0; } else { // std-frm (len=320): std_ZERO-frame (7611 00..00 ECC7) for (i = NDATA_LEN; i < FRAME_LEN; i++) gpx->frame[i] = 0; gpx->frame[pos_ZEROstd ] = 0x76; // pck_ZEROstd gpx->frame[pos_ZEROstd+1] = 0x11; // pck_ZEROstd for (i = pos_ZEROstd+2; i < NDATA_LEN-2; i++) gpx->frame[i] = 0; gpx->frame[NDATA_LEN-2] = 0xEC; // crc(pck_ZEROstd) gpx->frame[NDATA_LEN-1] = 0xC7; // crc(pck_ZEROstd) } for (i = 0; i < rs_K; i++) cw1[rs_R+i] = gpx->frame[cfg_rs41.msgpos+2*i ]; for (i = 0; i < rs_K; i++) cw2[rs_R+i] = gpx->frame[cfg_rs41.msgpos+2*i+1]; errors1 = rs_decode(&gpx->RS, cw1, err_pos1, err_val1); errors2 = rs_decode(&gpx->RS, cw2, err_pos2, err_val2); } if (gpx->option.ecc == 4) // set (probably) known bytes (if same rs41) { int crc = 0; float frnb_ts = gpx->ecdat.ts - gpx->ecdat.last_frnb_ts + 0.5f; int frnb = gpx->ecdat.last_frnb + (unsigned)frnb_ts; float calfr_ts = gpx->ecdat.ts - gpx->ecdat.last_calfrm_ts + 0.5f; int calfr = (gpx->ecdat.last_calfrm + (unsigned)calfr_ts) % 51; if (errors1 < 0) { // chkCRC crc = check_CRC(gpx, pos_FRAME, pck_FRAME); if (crc) { if ( gpx->id[0] && strncmp(gpx->frame+pos_SondeID, gpx->id, 8) != 0 ) { // raw: gpx->id[0]==0 // check gpx->frame+pos_SondeID[1..7] in 0x30..0x39 set_bytes(gpx, pos_SondeID, gpx->id, 8, 1, frmset+setcnt); setcnt += 8/2; } crc = check_CRC(gpx, pos_FRAME, pck_FRAME); if (crc && gpx->calfrchk[calfr]) { // pos_CalData: 0x052 // gpx->frame[pos_CalData] == calfr ? if (gpx->frame[pos_CalData] != calfr) { } else { // probably same SondeID //gpx->frame[pos_CalData] = calfr; set_bytes(gpx, pos_CalData+1, gpx->calibytes+calfr*16, 16, 1, frmset+setcnt); setcnt += 16/2; } } crc = check_CRC(gpx, pos_FRAME, pck_FRAME); //pos_FrameNb: 0x03B=59 if (crc && ((frnb>>8)&0xFF) != gpx->frame[pos_FrameNb+1]) { // last valid check, last_frnb>0 ... if (gpx->ecdat.last_frnb > 0) { gpx->frame[pos_FrameNb+1] = (frnb>>8)&0xFF; frmset[setcnt++] = pos_FrameNb+1; } } } for (i = 0; i < rs_K; i++) cw1[rs_R+i] = gpx->frame[cfg_rs41.msgpos+2*i ]; errors1 = rs_decode(&gpx->RS, cw1, err_pos1, err_val1); } if (errors2 < 0) { // chkCRC crc = check_CRC(gpx, pos_FRAME, pck_FRAME); if (crc) { // check gpx->frame+pos_SondeID[1..7] in 0x30..0x39 if ( gpx->id[0] && strncmp(gpx->frame+pos_SondeID, gpx->id, 8) != 0 ) { set_bytes(gpx, pos_SondeID, gpx->id, 8, 2, frmset+setcnt); setcnt += 8/2; } crc = check_CRC(gpx, pos_FRAME, pck_FRAME); if (crc && gpx->calfrchk[calfr]) { if (gpx->frame[pos_CalData] == calfr) { set_bytes(gpx, pos_CalData+1, gpx->calibytes+calfr*16, 16, 2, frmset+setcnt); setcnt += 16/2; } } crc = check_CRC(gpx, pos_FRAME, pck_FRAME); //pos_FrameNb: 0x03B=59 if (crc && (frnb&0xFF) != gpx->frame[pos_FrameNb]) { // last valid check, last_frnb>0 ... if (gpx->ecdat.last_frnb > 0) { gpx->frame[pos_FrameNb] = frnb&0xFF; frmset[setcnt++] = pos_FrameNb; } } } for (i = 0; i < rs_K; i++) cw2[rs_R+i] = gpx->frame[cfg_rs41.msgpos+2*i+1]; errors2 = rs_decode(&gpx->RS, cw2, err_pos2, err_val2); } } // 3rd pass: // 2 RS codewords interleaved: 2x12 errors can be corrected; // CRC is good for list decoding, high rate is not; // burst errors could affect neighboring bytes, however // if AWGN and 24 bit-errors per frame, probability for 2 bit-errors in 1 byte is low; // low byte-score -> erasure , low bit-score -> bit-toggle: // - erasures: 11 + 2/2 = 12 (11 errors and 2 erasures per codeword can be corrected) // 11 + 2 = 13: try combinations of 2 erasures with low byte-scores // - toggle low-score bits if (gpx->option.ecc > 2) { int pos_cw = 0; int pos_frm = 0; if (errors1 < 0) { for (i = 1; i < Era_max; i++) { pos_frm = gpx->ecdat.sort_idx1[i]; if (inFixed(gpx, pos_frm, frmset, setcnt)) continue; if (pos_frm < cfg_rs41.msgpos) pos_cw = pos_frm - cfg_rs41.parpos; else pos_cw = rs_R + (pos_frm - cfg_rs41.msgpos)/2; if (pos_cw < 0 || pos_cw > 254) continue; era_pos[0] = pos_cw; for (j = 0; j < i; j++) { pos_frm = gpx->ecdat.sort_idx1[j]; if (inFixed(gpx, pos_frm, frmset, setcnt)) continue; if (pos_frm < cfg_rs41.msgpos) pos_cw = pos_frm - cfg_rs41.parpos; else pos_cw = rs_R + (pos_frm - cfg_rs41.msgpos)/2; if (pos_cw < 0 || pos_cw > 254) continue; era_pos[1] = pos_cw; //k = -1; for (k = -1; k < j; k++) // toggle low-score bits { if (k >= 0) { pos_frm = gpx->ecdat.sort_idx1[k]; if (inFixed(gpx, pos_frm, frmset, setcnt)) continue; else { if (pos_frm < cfg_rs41.msgpos) pos_cw = pos_frm - cfg_rs41.parpos; else pos_cw = rs_R + (pos_frm - cfg_rs41.msgpos)/2; if (pos_cw < 0 || pos_cw > 254) continue; cw1[pos_cw] ^= gpx->dfrm_bitscore[pos_frm]; } } errors1 = rs_decode_ErrEra(&gpx->RS, cw1, 2, era_pos, err_pos1, err_val1); if (errors1 >= 0) { j = 256; i = 256; k = 256; } //break; //else if (k >= 0) { cw1[pos_cw] ^= gpx->dfrm_bitscore[pos_frm]; } } } } } if (errors2 < 0) { for (i = 1; i < Era_max; i++) { pos_frm = gpx->ecdat.sort_idx2[i]; if (inFixed(gpx, pos_frm, frmset, setcnt)) continue; if (pos_frm < cfg_rs41.msgpos) pos_cw = pos_frm - cfg_rs41.parpos - rs_R; else pos_cw = rs_R + (pos_frm - cfg_rs41.msgpos)/2; if (pos_cw < 0 || pos_cw > 254) continue; era_pos[0] = pos_cw; for (j = 0; j < i; j++) { pos_frm = gpx->ecdat.sort_idx2[j]; if (inFixed(gpx, pos_frm, frmset, setcnt)) continue; if (pos_frm < cfg_rs41.msgpos) pos_cw = pos_frm - cfg_rs41.parpos - rs_R; else pos_cw = rs_R + (pos_frm - cfg_rs41.msgpos)/2; if (pos_cw < 0 || pos_cw > 254) continue; era_pos[1] = pos_cw; //k = -1; for (k = -1; k < j; k++) // toggle low-score bits { if (k >= 0) { pos_frm = gpx->ecdat.sort_idx2[k]; if (inFixed(gpx, pos_frm, frmset, setcnt)) continue; else { if (pos_frm < cfg_rs41.msgpos) pos_cw = pos_frm - cfg_rs41.parpos - rs_R; else pos_cw = rs_R + (pos_frm - cfg_rs41.msgpos)/2; if (pos_cw < 0 || pos_cw > 254) continue; cw2[pos_cw] ^= gpx->dfrm_bitscore[pos_frm]; } } errors2 = rs_decode_ErrEra(&gpx->RS, cw2, 2, era_pos, err_pos2, err_val2); if (errors2 >= 0) { j = 256; i = 256; k = 256; } //break; //else if (k >= 0) { cw2[pos_cw] ^= gpx->dfrm_bitscore[pos_frm]; } } } } } } // Wenn Fehler im 00-padding korrigiert wurden, // war entweder der frame zu kurz, oder // Fehler wurden falsch korrigiert; // allerdings ist bei t=12 die Wahrscheinlichkeit, // dass falsch korrigiert wurde mit 1/t! sehr gering. // check CRC32 // CRC32 OK: //for (i = 0; i < cfg_rs41.hdrlen; i++) frame[i] = data[i]; for (i = 0; i < rs_R; i++) { gpx->frame[cfg_rs41.parpos+ i] = cw1[i]; gpx->frame[cfg_rs41.parpos+rs_R+i] = cw2[i]; } for (i = 0; i < rs_K; i++) { // cfg_rs41.msglen <= rs_K gpx->frame[cfg_rs41.msgpos+ 2*i] = cw1[rs_R+i]; gpx->frame[cfg_rs41.msgpos+1+2*i] = cw2[rs_R+i]; } if (leak) { gpx->frame[cfg_rs41.msgpos+2*i] = cw1[rs_R+i]; } ret = errors1 + errors2; if (errors1 < 0 || errors2 < 0) { ret = 0; if (errors1 < 0) ret |= 0x1; if (errors2 < 0) ret |= 0x2; ret = -ret; } return ret; } /* ------------------------------------------------------------------------------------ */ static int prn_frm(gpx_t *gpx) { fprintf(stdout, "[%5d] ", gpx->frnr); fprintf(stdout, "(%s) ", gpx->id); if (gpx->option.vbs == 3) fprintf(stdout, "(%.1f V) ", gpx->batt); fprintf(stdout, " "); return 0; } static int prn_ptu(gpx_t *gpx) { fprintf(stdout, " "); if (gpx->T > -273.0) fprintf(stdout, " T=%.1fC ", gpx->T); if (gpx->RH > -0.5 && gpx->option.ptu != 2) fprintf(stdout, " _RH=%.0f%% ", gpx->RH); if (gpx->P > 0.0) { if (gpx->P < 100.0) fprintf(stdout, " P=%.2fhPa ", gpx->P); else fprintf(stdout, " P=%.1fhPa ", gpx->P); } if (gpx->option.ptu == 2) { if (gpx->RH2 > -0.5) fprintf(stdout, " RH2=%.0f%% ", gpx->RH2); } // dew point if (gpx->option.dwp) { float rh = gpx->RH; float Td = -273.15f; // dew point Td if (gpx->option.ptu == 2) rh = gpx->RH2; if (rh > 0.0f && gpx->T > -273.0f) { float gamma = logf(rh / 100.0f) + (17.625f * gpx->T / (243.04f + gpx->T)); Td = 243.04f * gamma / (17.625f - gamma); fprintf(stdout, " Td=%.1fC ", Td); } } return 0; } static int prn_gpstime(gpx_t *gpx) { //Gps2Date(gpx); fprintf(stdout, "%s ", weekday[gpx->wday]); fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%06.3f", gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek); if (gpx->option.vbs == 3) fprintf(stdout, " (W %d)", gpx->week); fprintf(stdout, " "); return 0; } static int prn_gpspos(gpx_t *gpx) { //fprintf(stdout, " "); fprintf(stdout, " lat: %.5f ", gpx->lat); fprintf(stdout, " lon: %.5f ", gpx->lon); fprintf(stdout, " alt: %.2f ", gpx->alt); fprintf(stdout, " vH: %4.1f D: %5.1f vV: %3.1f ", gpx->vH, gpx->vD, gpx->vV); if (gpx->option.vbs == 3) fprintf(stdout, " sats: %02d ", gpx->numSV); return 0; } static int prn_sat1(gpx_t *gpx, int ofs) { fprintf(stdout, "\n"); fprintf(stdout, "iTOW: 0x%08X", u4(gpx->frame+pos_GPSiTOW+ofs)); fprintf(stdout, " week: 0x%04X", u2(gpx->frame+pos_GPSweek+ofs)); return 0; } const double c = 299.792458e6; const double L1 = 1575.42e6; static int prn_sat2(gpx_t *gpx, int ofs) { int i, n; int sv; ui32_t minPR; fprintf(stdout, "\n"); minPR = u4(gpx->frame+pos_minPR+ofs); fprintf(stdout, "minPR: %d", minPR); fprintf(stdout, "\n"); for (i = 0; i < 12; i++) { n = i*7; sv = gpx->frame[pos_satsN+ofs+2*i]; if (sv == 0xFF) break; fprintf(stdout, " SV: %2d ", sv); //fprintf(stdout, " (%02x) ", gpx->frame[pos_satsN+2*i+1]); fprintf(stdout, "# "); fprintf(stdout, "prMes: %.1f", u4(gpx->frame+pos_dataSats+ofs+n)/100.0 + minPR); fprintf(stdout, " "); fprintf(stdout, "doMes: %.1f", -i3(gpx->frame+pos_dataSats+ofs+n+4)/100.0*L1/c); fprintf(stdout, "\n"); } return 0; } static int prn_sat3(gpx_t *gpx, int ofs) { int numSV; double pDOP, sAcc; fprintf(stdout, "\n"); fprintf(stdout, "ECEF-POS: (%d,%d,%d)\n", (i32_t)u4(gpx->frame+pos_GPSecefX+ofs), (i32_t)u4(gpx->frame+pos_GPSecefY+ofs), (i32_t)u4(gpx->frame+pos_GPSecefZ+ofs)); fprintf(stdout, "ECEF-VEL: (%d,%d,%d)\n", (i16_t)u2(gpx->frame+pos_GPSecefV+ofs+0), (i16_t)u2(gpx->frame+pos_GPSecefV+ofs+2), (i16_t)u2(gpx->frame+pos_GPSecefV+ofs+4)); numSV = gpx->frame[pos_numSats+ofs]; sAcc = gpx->frame[pos_sAcc+ofs]/10.0; if (gpx->frame[pos_sAcc+ofs] == 0xFF) sAcc = -1.0; pDOP = gpx->frame[pos_pDOP+ofs]/10.0; if (gpx->frame[pos_pDOP+ofs] == 0xFF) pDOP = -1.0; fprintf(stdout, "numSatsFix: %2d sAcc: %.1f pDOP: %.1f\n", numSV, sAcc, pDOP); /* fprintf(stdout, "CRC: "); fprintf(stdout, " %04X", pck_GPS1); if (check_CRC(gpx, pos_GPS1+ofs, pck_GPS1)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); //fprintf(stdout, "[%+d]", check_CRC(gpx, pos_GPS1, pck_GPS1)); fprintf(stdout, " %04X", pck_GPS2); if (check_CRC(gpx, pos_GPS2+ofs, pck_GPS2)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); //fprintf(stdout, "[%+d]", check_CRC(gpx, pos_GPS2, pck_GPS2)); fprintf(stdout, " %04X", pck_GPS3); if (check_CRC(gpx, pos_GPS3+ofs, pck_GPS3)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); //fprintf(stdout, "[%+d]", check_CRC(gpx, pos_GPS3, pck_GPS3)); fprintf(stdout, "\n"); */ return 0; } static int print_position(gpx_t *gpx, int ec) { int i; int err, err0, err1, err2, err3; //int output, out_mask; int encrypted = 0; int unexp = 0; int out = 1; int sat = 0; int pos_aux = 0, cnt_aux = 0; int ofs_ptu = 0, pck_ptu = 0; //gpx->out = 0; gpx->aux = 0; if (gpx->option.sat) sat = 1; if (gpx->option.slt) out = 0; else out = 1; if ( ec >= 0 ) { int pos, blk, len, crc, pck; int flen = NDATA_LEN; int ofs_cal = 0; int frm_end = NDATA_LEN-2; if (frametype(gpx) < 0) flen += XDATA_LEN; switch (gpx->frame[pos_PTU]) { case 0x7A: // 0x7A2A frm_end = flen-2; break; case 0x7F: // 0x7F1B frm_end = pos_ZEROstd + 0x1B-0x2A - 2; break; case 0x80: // 0x80A7 frm_end = pos_PTU + 2 + 0xA7; break; } pos = pos_FRAME; gpx->crc = 0; while (pos < flen-1) { blk = gpx->frame[pos]; len = gpx->frame[pos+1]; crc = check_CRC(gpx, pos, blk<<8); pck = (blk<<8) | len; if ( crc == 0 ) // ecc-OK -> crc-OK { int ofs = 0; switch (pck) { case pck_FRAME: // 0x7928 ofs = pos - pos_FRAME; ofs_cal = ofs; err = get_FrameConf(gpx, ofs); if ( !err ) { if (out || sat) prn_frm(gpx); } break; case pck_PTU: // 0x7A2A ofs_ptu = pos - pos_PTU; pck_ptu = pck_PTU; if ( 0 && gpx->option.ptu ) { //err0 = get_PTU(gpx, ofs_ptu, pck_ptu); // if (!err0) prn_ptu(gpx); } break; case pck_GPS1: // 0x7C1E ofs = pos - pos_GPS1; err1 = get_GPS1(gpx, ofs); if ( !err1 ) { Gps2Date(gpx); if (out) prn_gpstime(gpx); if (sat) prn_sat1(gpx, ofs); } break; case pck_GPS2: // 0x7D59 ofs = pos - pos_GPS2; err2 = get_GPS2(gpx, ofs); if ( !err2 ) { if (sat) prn_sat2(gpx, ofs); } break; case pck_GPS3: // 0x7B15 ofs = pos - pos_GPS3; err3 = get_GPS3(gpx, ofs); if ( !err3 ) { if (out) prn_gpspos(gpx); if (sat) prn_sat3(gpx, ofs); } break; case pck_SGM_xTU: // 0x7F1B ofs_ptu = pos - pos_PTU; pck_ptu = pck; if ( 0 ) { //err0 = get_PTU(gpx, ofs_ptu, pck_ptu); } break; case pck_SGM_CRYPT: // 0x80A7 encrypted = 1; if (out) fprintf(stdout, " [%04X] (RS41-SGM) ", pck_SGM_CRYPT); break; default: if (blk == 0x7E) { if (pos_aux == 0) pos_aux = pos; // pos == pos_AUX ? cnt_aux += 1; } if (blk == 0x76) { // ZERO-Padding pck } if (blk != 0x76 && blk != 0x7E) { if (out) fprintf(stdout, " [%04X] ", pck); unexp = 1; } } } else { // CRC-ERROR (ECC-OK) fprintf(stdout, " [ERROR]\n"); break; } pos += 2+len+2; // next pck if ( pos > frm_end ) // end of (sub)frame { if (gpx->option.ptu && !sat && !encrypted && pck_ptu > 0) { err0 = get_PTU(gpx, ofs_ptu, pck_ptu, !err3); if (!err0 && out) prn_ptu(gpx); } pck_ptu = 0; get_Calconf(gpx, out, ofs_cal); if (out && ec > 0 && pos > flen-1) fprintf(stdout, " (%d)", ec); if (pos_aux) gpx->aux = get_Aux(gpx, out && gpx->option.vbs > 1, pos_aux); gpx->crc = 0; frm_end = FRAME_LEN-2; if (out || sat) fprintf(stdout, "\n"); if (gpx->option.jsn) { // Print out telemetry data as JSON if ((!err && !err1 && !err3) || (!err && encrypted)) { // frame-nb/id && gps-time && gps-position (crc-)ok; 3 CRCs, RS not needed // eigentlich GPS, d.h. UTC = GPS - 18sec (ab 1.1.2017) char *ver_jsn = NULL; fprintf(stdout, "{ \"type\": \"%s\"", "RS41"); fprintf(stdout, ", \"frame\": %d, \"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f, \"sats\": %d, \"bt\": %d, \"batt\": %.2f", gpx->frnr, gpx->id, gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt, gpx->vH, gpx->vD, gpx->vV, gpx->numSV, gpx->conf_cd, gpx->batt ); if (gpx->option.ptu && !err0) { float _RH = gpx->RH; if (gpx->option.ptu == 2) _RH = gpx->RH2; if (gpx->T > -273.0) { fprintf(stdout, ", \"temp\": %.1f", gpx->T ); } if (_RH > -0.5) { fprintf(stdout, ", \"humidity\": %.1f", _RH ); } if (gpx->P > 0.0) { fprintf(stdout, ", \"pressure\": %.2f", gpx->P ); } } if (gpx->aux) { // <=> gpx->xdata[0]!='\0' fprintf(stdout, ", \"aux\": \"%s\"", gpx->xdata ); } if (encrypted) { fprintf(stdout, ", \"subtype\": \"RS41-SGM\", \"encrypted\": true"); } else { fprintf(stdout, ", \"subtype\": \"%s\"", *gpx->rstyp ? gpx->rstyp : "RS41" ); // RS41-SG(P/M) if (strncmp(gpx->rstyp, "RS41-SGM", 8) == 0) { fprintf(stdout, ", \"encrypted\": false"); } } if (gpx->jsn_freq > 0) { // rs41-frequency: gpx->freq int fq_kHz = gpx->jsn_freq; if (gpx->freq > 0) fq_kHz = gpx->freq; fprintf(stdout, ", \"freq\": %d", fq_kHz); } if (*gpx->rsm) { // RSM type fprintf(stdout, ", \"rs41_mainboard\": \"%s\"", gpx->rsm); } if (gpx->conf_fw) { // firmware fprintf(stdout, ", \"rs41_mainboard_fw\": %d", gpx->conf_fw); } if (gpx->option.cal == 1) { // cal/conf if ( !gpx->calconf_sent && gpx->calconf_complete ) { fprintf(stdout, ", \"rs41_calconf320\": \""); for (int _j = 0; _j < 50*16; _j++) { fprintf(stdout, "%02X", gpx->calibytes[_j]); } fprintf(stdout, "\""); gpx->calconf_sent = 1; } if (gpx->calconf_subfrm[0] == 0x32) { fprintf(stdout, ", \"rs41_conf0x32\": \""); for (int _j = 0; _j < 16; _j++) { fprintf(stdout, "%02X", gpx->calconf_subfrm[1+_j]); } fprintf(stdout, "\""); } } if (gpx->option.cal == 2) { // cal/conf fprintf(stdout, ", \"rs41_subfrm\": \"0x%02X:", gpx->calconf_subfrm[0]); for (int _j = 0; _j < 16; _j++) { fprintf(stdout, "%02X", gpx->calconf_subfrm[1+_j]); } fprintf(stdout, "\""); } // Include frequency derived from subframe information if available. if (gpx->freq > 0) { fprintf(stdout, ", \"tx_frequency\": %d", gpx->freq ); } // Reference time/position fprintf(stdout, ", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec fprintf(stdout, ", \"ref_position\": \"%s\"", "GPS" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid #ifdef VER_JSN_STR ver_jsn = VER_JSN_STR; #endif if (ver_jsn && *ver_jsn != '\0') fprintf(stdout, ", \"version\": \"%s\"", ver_jsn); fprintf(stdout, " }\n"); fprintf(stdout, "\n"); } } } } } // else if (ec < 0 && (out || sat /*|| gpx->option.jsn*/)) { // // crc-OK pcks ? // int pck, ofs; int output = 0, out_mask; gpx->crc = 0; out_mask = crc_FRAME|crc_GPS1|crc_GPS3; if (gpx->option.ptu) out_mask |= crc_PTU; err = get_FrameConf(gpx, 0); if (out && !err) { prn_frm(gpx); output = 1; } pck = (gpx->frame[pos_PTU]<<8) | gpx->frame[pos_PTU+1]; ofs = 0; if (pck < 0x8000) { //err0 = get_PTU(gpx, 0, pck, 0); if (pck == pck_PTU) ofs = 0; else if (pck == pck_SGM_xTU) ofs = 0x1B-0x2A; err1 = get_GPS1(gpx, ofs); err2 = get_GPS2(gpx, ofs); err3 = get_GPS3(gpx, ofs); if (!err1) Gps2Date(gpx); err0 = get_PTU(gpx, 0, pck, !err3); if (out) { if (!err1) prn_gpstime(gpx); if (!err3) prn_gpspos(gpx); if (!err0 && gpx->option.ptu) prn_ptu(gpx); if (0 && !err) get_Calconf(gpx, out, 0); // only if ecc-OK output = ((gpx->crc & out_mask) != out_mask); if (output) { fprintf(stdout, " "); fprintf(stdout, "["); for (i=0; i<5; i++) fprintf(stdout, "%d", (gpx->crc>>i)&1); fprintf(stdout, "]"); } } } else if (pck == pck_SGM_CRYPT) { if (out && !err) { fprintf(stdout, " [%04X] (RS41-SGM) ", pck_SGM_CRYPT); //fprintf(stdout, "[%d] ", check_CRC(gpx, pos_PTU, pck_SGM_CRYPT)); output = 1; } } if (out && output) { if (ec == -1) fprintf(stdout, " (-+)"); else if (ec == -2) fprintf(stdout, " (+-)"); else /*ec == -3*/ fprintf(stdout, " (--)"); fprintf(stdout, "\n"); // fflush(stdout); } } return 0; } static void print_frame(gpx_t *gpx, int len) { int i, j, ec = 0, ft; int j1 = 0; int j2 = 0; int sort_score_idx[FRAME_LEN]; float max_minscore = 0.0; gpx->crc = 0; // len < NDATA_LEN: EOF if (len < pos_GPS1) { // else: try prev.frame for (i = len; i < FRAME_LEN; i++) gpx->frame[i] = 0; } //frame[pos_FRAME-1] == 0x0F: len == NDATA_LEN(320) //frame[pos_FRAME-1] == 0xF0: len == FRAME_LEN(518) ft = frametype(gpx); if (ft >= 0) len = NDATA_LEN; // ft >= 0: NDATA_LEN (default) else len = FRAME_LEN; // ft < 0: FRAME_LEN (aux) for (i = FRAMESTART; i < len; i++) { if (fabs(gpx->ecdat.frm_bytescore[i]) > max_minscore) max_minscore = fabs(gpx->ecdat.frm_bytescore[i]); } max_minscore = floor(max_minscore+1.5); if (gpx->option.ecc > 2) { for (i = 0; i < FRAMESTART; i++) gpx->ecdat.frm_bytescore[i] = max_minscore*2.0; //*sign for (i = len; i < FRAME_LEN; i++) gpx->ecdat.frm_bytescore[i] = max_minscore; } for (i = 0; i < FRAME_LEN; i++) sort_score_idx[i] = i; if (gpx->option.ecc > 2) { for (i = 0; i < FRAME_LEN; i++) { for (j = 0; j < FRAME_LEN-1; j++) { if (fabs(gpx->ecdat.frm_bytescore[sort_score_idx[j+1]]) < fabs(gpx->ecdat.frm_bytescore[sort_score_idx[j]])) { int tmp = sort_score_idx[j+1]; sort_score_idx[j+1] = sort_score_idx[j]; sort_score_idx[j] = tmp; } } } for (i = 0; i < FRAME_LEN; i++) gpx->ecdat.sort_idx1[i] = i; for (i = 0; i < FRAME_LEN; i++) gpx->ecdat.sort_idx2[i] = i; j1 = 0; j2 = 0; for (i = 0; i < FRAME_LEN; i++) { if (sort_score_idx[i] >= cfg_rs41.parpos && sort_score_idx[i] < cfg_rs41.parpos+ rs_R) gpx->ecdat.sort_idx1[j1++] = sort_score_idx[i]; else if (sort_score_idx[i] >= cfg_rs41.parpos+rs_R && sort_score_idx[i] < cfg_rs41.parpos+2*rs_R) gpx->ecdat.sort_idx2[j2++] = sort_score_idx[i]; else if (sort_score_idx[i] >= cfg_rs41.msgpos && sort_score_idx[i] % 2 == 0) gpx->ecdat.sort_idx1[j1++] = sort_score_idx[i]; else if (sort_score_idx[i] >= cfg_rs41.msgpos && sort_score_idx[i] % 2 == 1) gpx->ecdat.sort_idx2[j2++] = sort_score_idx[i]; } } if (gpx->option.ecc) { ec = rs41_ecc(gpx, len); } if (gpx->option.raw) { for (i = 0; i < len; i++) { fprintf(stdout, "%02x", gpx->frame[i]); } if (gpx->option.ecc) { if (ec >= 0) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); if (gpx->option.ecc /*>= 2*/) { if (ec > 0) fprintf(stdout, " (%d)", ec); if (ec < 0) { if (ec == -1) fprintf(stdout, " (-+)"); else if (ec == -2) fprintf(stdout, " (+-)"); else /*ec == -3*/ fprintf(stdout, " (--)"); } } } fprintf(stdout, "\n"); if (gpx->option.slt /*&& gpx->option.jsn*/) { print_position(gpx, ec); } } else { print_position(gpx, ec); } } /* -------------------------------------------------------------------------- */ int main(int argc, char *argv[]) { //int option_inv = 0; // invertiert Signal int option_min = 0; int option_iq = 0; int option_iqdc = 0; int option_lp = 0; int option_dc = 0; int option_noLUT = 0; int option_bin = 0; int option_softin = 0; int option_pcmraw = 0; int wavloaded = 0; int sel_wavch = 0; // audio channel: left int rawhex = 0, xorhex = 0; int cfreq = -1; FILE *fp; char *fpname = NULL; int k; char bitbuf[8]; int bitpos = 0, b8pos = 0, byte_count = FRAMESTART; int bit, byte; int bitQ; int difbyte = 0; hsbit_t hsbit, hsbit1; int header_found = 0; float thres = 0.7; // dsp.mv threshold float _mv = 0.0; float lpIQ_bw = 7.4e3; int symlen = 1; int bitofs = 2; // +0 .. +3 int shift = 0; pcm_t pcm = {0}; dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp)); gpx_t gpx = {0}; hdb_t hdb = {0}; float softbits[BITS]; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _fileno(stdin) #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, -vx, -vv (info, aux, info/conf)\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); //fprintf(stderr, " --crc (check CRC)\n"); //fprintf(stderr, " --ecc2 (Reed-Solomon )\n"); fprintf(stderr, " --ths (peak threshold; default=%.1f)\n", thres); fprintf(stderr, " --iq0,2,3 (IQ data)\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { gpx.option.vbs = 1; } else if (strcmp(*argv, "-vx") == 0) { gpx.option.vbs = 2; } // xdata else if (strcmp(*argv, "-vv") == 0) { gpx.option.vbs = 3; } //else if (strcmp(*argv, "-vvv") == 0) { gpx.option.vbs = 4; } else if (strcmp(*argv, "--aux") == 0) { gpx.option.aux = 1; } else if (strcmp(*argv, "--crc") == 0) { gpx.option.crc = 1; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { gpx.option.raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { gpx.option.inv = 1; } else if (strcmp(*argv, "--ecc" ) == 0) { gpx.option.ecc = 1; } else if (strcmp(*argv, "--ecc2") == 0) { gpx.option.ecc = 2; } else if (strcmp(*argv, "--ecc3") == 0) { gpx.option.ecc = 3; } else if (strcmp(*argv, "--ecc4") == 0) { gpx.option.ecc = 4; } else if (strcmp(*argv, "--sat") == 0) { gpx.option.sat = 1; } else if (strcmp(*argv, "--ptu" ) == 0) { gpx.option.ptu = 1; } else if (strcmp(*argv, "--ptu2") == 0) { gpx.option.ptu = 2; } else if (strcmp(*argv, "--dewp") == 0) { gpx.option.dwp = 1; } else if (strcmp(*argv, "--ch2") == 0) { sel_wavch = 1; } // right channel (default: 0=left) else if (strcmp(*argv, "--auto") == 0) { gpx.option.aut = 1; } else if (strcmp(*argv, "--bin") == 0) { option_bin = 1; } // bit/byte binary input else if (strcmp(*argv, "--softin") == 0) { option_softin = 1; } // float32 soft input else if (strcmp(*argv, "--silent") == 0) { gpx.option.slt = 1; } else if (strcmp(*argv, "--ths") == 0) { ++argv; if (*argv) { thres = atof(*argv); } else return -1; } else if ( (strcmp(*argv, "-d") == 0) ) { ++argv; if (*argv) { shift = atoi(*argv); if (shift > 4) shift = 4; if (shift < -4) shift = -4; } else return -1; } else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; } else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3 else if (strcmp(*argv, "--iqdc") == 0) { option_iqdc = 1; } // iq-dc removal (iq0,2,3) else if (strcmp(*argv, "--IQ") == 0) { // fq baseband -> IF (rotate from and decimate) double fq = 0.0; // --IQ , -0.5 < fq < 0.5 ++argv; if (*argv) fq = atof(*argv); else return -1; if (fq < -0.5) fq = -0.5; if (fq > 0.5) fq = 0.5; dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t) option_iq = 5; } else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ/IF lowpass else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz double bw = 0.0; ++argv; if (*argv) bw = atof(*argv); else return -1; if (bw > 4.6 && bw < 24.0) lpIQ_bw = bw*1e3; option_lp |= LP_IQ; } else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; } else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; } else if (strcmp(*argv, "--min") == 0) { option_min = 1; } else if (strcmp(*argv, "--json") == 0) { gpx.option.jsn = 1; gpx.option.ecc = 2; gpx.option.crc = 1; } else if (strcmp(*argv, "--jsn_cfq") == 0) { int frq = -1; // center frequency / Hz ++argv; if (*argv) frq = atoi(*argv); else return -1; if (frq < 300000000) frq = -1; cfreq = frq; } else if (strcmp(*argv, "--jsnsubfrm1") == 0) { gpx.option.cal = 1; } // json cal/conf else if (strcmp(*argv, "--jsnsubfrm2") == 0) { gpx.option.cal = 2; } // json cal/conf else if (strcmp(*argv, "--rawhex") == 0) { rawhex = 2; } // raw hex input else if (strcmp(*argv, "--xorhex") == 0) { rawhex = 2; xorhex = 1; } // raw xor input else if (strcmp(*argv, "-") == 0) { int sample_rate = 0, bits_sample = 0, channels = 0; ++argv; if (*argv) sample_rate = atoi(*argv); else return -1; ++argv; if (*argv) bits_sample = atoi(*argv); else return -1; channels = 2; if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) { fprintf(stderr, "- \n"); return -1; } pcm.sr = sample_rate; pcm.bps = bits_sample; pcm.nch = channels; option_pcmraw = 1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "error: open %s\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; if (option_iq == 5 && option_dc) option_lp |= LP_FM; // LUT faster for decM, however frequency correction after decimation // LUT recommonded if decM > 2 // if (option_noLUT && option_iq == 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0; if (gpx.option.raw && gpx.option.jsn) gpx.option.slt = 1; if (gpx.option.ecc < 2) gpx.option.ecc = 1; // turn off for ber-measurement if (gpx.option.ecc) { rs_init_RS255(&gpx.RS); // RS, GF } if (gpx.option.aux) gpx.option.vbs = 2; // init gpx memcpy(gpx.frame, rs41_header_bytes, sizeof(rs41_header_bytes)); // 8 header bytes gpx.calconf_subfrm = gpx.frame+pos_CalData; if (gpx.option.cal) { gpx.option.jsn = 1; gpx.option.ecc = 2; gpx.option.crc = 1; } if (cfreq > 0) gpx.jsn_freq = (cfreq+500)/1000; #ifdef EXT_FSK if (!option_bin && !option_softin) { option_softin = 1; fprintf(stderr, "reading float32 soft symbols\n"); } #endif if (!rawhex) { if (!option_bin && !option_softin) { if (option_iq == 0 && option_pcmraw) { fclose(fp); fprintf(stderr, "error: raw data not IQ\n"); return -1; } if (option_iq) sel_wavch = 0; pcm.sel_ch = sel_wavch; if (option_pcmraw == 0) { k = read_wav_header(&pcm, fp); if ( k < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } } if (cfreq > 0) { int fq_kHz = (cfreq - dsp.xlt_fq*pcm.sr + 500)/1e3; gpx.jsn_freq = fq_kHz; } // rs41: BT=0.5, h=0.8,1.0 ? symlen = 1; // init dsp // dsp.fp = fp; dsp.sr = pcm.sr; dsp.bps = pcm.bps; dsp.nch = pcm.nch; dsp.ch = pcm.sel_ch; dsp.br = (float)BAUD_RATE; dsp.sps = (float)dsp.sr/dsp.br; dsp.symlen = symlen; dsp.symhd = symlen; dsp._spb = dsp.sps*symlen; dsp.hdr = rs41_header; dsp.hdrlen = strlen(rs41_header); dsp.BT = 0.5; // bw/time (ISI) // 0.3..0.5 dsp.h = 0.6; //0.7; // 0.7..0.8? modulation index abzgl. BT dsp.opt_iq = option_iq; dsp.opt_iqdc = option_iqdc; dsp.opt_lp = option_lp; dsp.lpIQ_bw = lpIQ_bw; // 7.4e3 (6e3..8e3) // IF lowpass bandwidth dsp.lpFM_bw = 6e3; // FM audio lowpass dsp.opt_dc = option_dc; dsp.opt_IFmin = option_min; if ( dsp.sps < 8 ) { fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps); } k = init_buffers(&dsp); // BT=0.5 (IQ-Int: BT > 0.5 ?) if ( k < 0 ) { fprintf(stderr, "error: init buffers\n"); return -1; } //if (option_iq >= 2) bitofs += 1; // FM: +1 , IQ: +2 bitofs += shift; } else { if (option_bin && option_softin) option_bin = 0; // init circular header bit buffer hdb.hdr = rs41_header; hdb.len = strlen(rs41_header); hdb.thb = 1.0 - 3.1/(float)hdb.len; // 1.0-max_bit_errors/hdrlen hdb.bufpos = -1; hdb.buf = calloc(hdb.len, sizeof(char)); if (hdb.buf == NULL) { fprintf(stderr, "error: malloc\n"); return -1; } hdb.ths = 0.7; // caution/test false positive hdb.sbuf = calloc(hdb.len, sizeof(float)); if (hdb.sbuf == NULL) { fprintf(stderr, "error: malloc\n"); return -1; } } while ( 1 ) { if (option_bin) { header_found = find_binhead(fp, &hdb, &_mv); } else if (option_softin) { header_found = find_softbinhead(fp, &hdb, &_mv); } else { // FM-audio: header_found = find_header(&dsp, thres, 4, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0 _mv = dsp.mv; } if (header_found == EOF) break; // mv == correlation score if (_mv *(0.5-gpx.option.inv) < 0) { if (gpx.option.aut == 0) header_found = 0; else gpx.option.inv ^= 0x1; } if (header_found) { byte_count = FRAMESTART; bitpos = 0; // byte_count*8-HEADLEN b8pos = 0; difbyte = 0; while ( byte_count < FRAME_LEN ) { if (option_bin) { bitQ = fgetc(fp); if (bitQ != EOF) { bit = bitQ & 0x1; hsbit.hb = bit; hsbit.sb = 2*bit-1; } } else if (option_softin) { float s = 0.0; bitQ = f32soft_read(fp, &s); if (bitQ != EOF) { bit = (s>=0.0); hsbit.hb = bit; hsbit.sb = s; } } else { float bl = -1; if (option_iq > 2) bl = 2.0; //bitQ = read_slbit(&dsp, &bit, 0, bitofs, bitpos, bl, 0); // symlen=1 bitQ = read_softbit2p(&dsp, &hsbit, 0, bitofs, bitpos, bl, 0, &hsbit1); // symlen=1 bit = hsbit.hb; if (gpx.option.ecc >= 3) bit = (hsbit.sb+hsbit1.sb)>=0; if (bitpos < FRAME_LEN*BITS && hsbit.sb*hsbit1.sb < 0) { difbyte |= 1< 0) { pbuf = fgets(buffer_rawhex, 2*FRAME_LEN+12, fp); if (pbuf == NULL) break; buffer_rawhex[2*FRAME_LEN] = '\0'; buf_sp = strchr(buffer_rawhex, ' '); if (buf_sp != NULL && buf_sp-buffer_rawhex < 2*FRAME_LEN) { buffer_rawhex[buf_sp-buffer_rawhex] = '\0'; } len = strlen(buffer_rawhex) / 2; if (len > pos_SondeID+10) { for (i = 0; i < len; i++) { //%2x SCNx8=%hhx(inttypes.h) sscanf(buffer_rawhex+2*i, "%2hhx", &frmbyte); // wenn ohne %hhx: sscanf(buffer_rawhex+rawhex*i, "%2x", &byte); frame[frameofs+i] = (ui8_t)byte; if (xorhex) frmbyte ^= mask[(frameofs+i) % MASK_LEN]; gpx.frame[frameofs+i] = frmbyte; } print_frame(&gpx, frameofs+len); } } } fclose(fp); return 0; }