/* * radiosonde RS92 * * * broadcast ephemeris: * http://cddis.gsfc.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html * ftp://cddis.gsfc.nasa.gov/gnss/data/daily/YYYY/DDD/YYn/brdcDDD0.YYn.Z (updated) * ftp://cddis.gsfc.nasa.gov/gnss/data/daily/YYYY/brdc/brdcDDD0.YYn.Z (final) * * SEM almanac: * https://celestrak.com/GPS/almanac/SEM/ * * GPS calendar: * http://adn.agi.com/GNSSWeb/ * * GPS-Hoehe ueber Ellipsoid, Geoid-Hoehe: * http://geographiclib.sourceforge.net/cgi-bin/GeoidEval */ /* gcc rs92gps.c -lm -o rs92gps (includes nav_gps_vel.c) examples: sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | ./rs92gps -e brdc3050.15n ./rs92gps -r 2015_11_01.wav > raw1.out sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | stdbuf -oL ./rs92gps -r > raw2.out ./rs92gps --dop 5 -gg -e brdc3050.15n --rawin1 raw.out sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | tee audio.wav | ./rs92gps -e brdc3050.15n ./rs92gps -g1 -e brdc3050.15n 2015_11_01-14.wav | tee out1.txt ./rs92gps -g2 -e brdc3050.15n 2015_11_01-14.wav | tee out2.txt sox 2015_11_01.wav -t wav - lowpass 2600 2>/dev/null | ./rs92gps -gg -e brdc3050.15n | tee out3.txt sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | stdbuf -oL ./rs92gps -e brdc3050.15n > out1.txt sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | stdbuf -oL ./rs92gps -e brdc3050.15n | tee out2.txt */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef unsigned short ui16_t; typedef unsigned int ui32_t; typedef struct { int frnr; char id[11]; int week; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; float sek; double lat; double lon; double alt; double vH; double vD; double vU; int sats[4]; double dop; int freq; unsigned short aux[4]; double diter; } gpx_t; gpx_t gpx; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_inv = 0, // invertiert Signal option_res = 0, // genauere Bitmessung option_crc = 0, // check CRC option_avg = 0, // moving average option_b = 0, fileloaded = 0, option_vergps = 0, option_iter = 0, option_vel = 0, // velocity option_aux = 0, // Aux/Ozon option_der = 0, // linErr rawin = 0; double dop_limit = 9.9; double d_err = 10000; int rollover = 0, err_gps = 0; int almanac = 0, ephem = 0; int exSat = -1; /* --- RS92-SGP: 8N1 manchester --- */ #define BITS (2*(1+8+1)) // 20 #define HEADOFS 40 // HEADOFS+HEADLEN = 120 (bis 0x10) #define HEADLEN 80 // (HEADOFS+HEADLEN) mod BITS = 0 /* #define HEADOFS 0 // HEADOFS muss 0 wegen Wiederholung #define HEADLEN 60 // HEADLEN < 100, (HEADOFS+HEADLEN) mod BITS = 0 */ #define FRAMESTART ((HEADOFS+HEADLEN)/BITS) /* 2A 10*/ char header[] = "10100110011001101001" "10100110011001101001" "10100110011001101001" "10100110011001101001" "1010011001100110100110101010100110101001"; char buf[HEADLEN+1] = "x"; int bufpos = -1; #define FRAME_LEN 240 ui8_t frame[FRAME_LEN] = { 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x10}; /* --- RS92-SGP ------------------- */ char buffer_rawin[3*FRAME_LEN+8]; //## rawin1: buffer_rawin[2*FRAME_LEN+4]; int frameofs = 0; #define MASK_LEN 64 ui8_t mask[MASK_LEN] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98, 0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26, 0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1, 0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1, 0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C, 0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61, 0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23, 0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1}; /* LFSR: ab i=8 (mod 64): * m[16+i] = m[i] ^ m[i+2] ^ m[i+4] ^ m[i+6] * ________________3205590EF944C6262160C2EA795D6DA15469470CDCE85CF1 * F776827F0799A22C937C3063F5102E61D0BCB4B606AAF423786E3BAEBF7B4CC196833E51B1490898 */ /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 4800 int sample_rate = 0, bits_sample = 0, channels = 0; float samples_per_bit = 0; int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } int read_wav_header(FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if ((bits_sample != 8) && (bits_sample != 16)) return -1; samples_per_bit = sample_rate/(float)BAUD_RATE; fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit); return 0; } #define EOF_INT 0x1000000 #define LEN_movAvg 3 int movAvg[LEN_movAvg]; unsigned long sample_count = 0; double bitgrenze = 0; int read_signed_sample(FILE *fp) { // int = i32_t int byte, i, sample, s=0; // EOF -> 0x1000000 for (i = 0; i < channels; i++) { // i = 0: links bzw. mono byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == 0) sample = byte; if (bits_sample == 16) { byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == 0) sample += byte << 8; } } if (bits_sample == 8) s = sample-128; // 8bit: 00..FF, centerpoint 0x80=128 if (bits_sample == 16) s = (short)sample; if (option_avg) { movAvg[sample_count % LEN_movAvg] = s; s = 0; for (i = 0; i < LEN_movAvg; i++) s += movAvg[i]; s = (s+0.5) / LEN_movAvg; } sample_count++; return s; } int par=1, par_alt=1; int read_bits_fsk(FILE *fp, int *bit, int *len) { static int sample; int n, y0; float l, x1; static float x0; n = 0; do{ y0 = sample; sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; //sample_count++; // in read_signed_sample() par_alt = par; par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) n++; } while (par*par_alt > 0); if (!option_res) l = (float)n / samples_per_bit; else { // genauere Bitlaengen-Messung x1 = sample/(float)(sample-y0); // hilft bei niedriger sample rate l = (n+x0-x1) / samples_per_bit; // meist mehr frames (nicht immer) x0 = x1; } *len = (int)(l+0.5); if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1 else *bit = (1-par_alt)/2; // sdr#= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) sum += sample; n++; } while (sample_count < bitgrenze); // n < samples_per_bit if (sum >= 0) *bit = 1; else *bit = 0; if (option_inv) *bit ^= 1; return 0; } /* ------------------------------------------------------------------------------------ */ // manchester1 1->10,0->01: 1.bit // manchester2 0->10,1->01: 2.bit // RS92-SGP: 8N1 manchester2 char manch(char *mbits) { if ((mbits[0] == 1) && (mbits[1] == 0)) return 0; else if ((mbits[0] == 0) && (mbits[1] == 1)) return 1; else return -1; } int bits2byte(char bits[]) { int i, byteval=0, d=1; int bit8[8]; if (manch(bits+0) != 0) return 0x100; for (i = 0; i < 8; i++) { bit8[i] = manch(bits+2*(i+1)); } if (manch(bits+(2*(8+1))) != 1) return 0x100; for (i = 0; i < 8; i++) { // little endian /* for (i = 7; i >= 0; i--) { // big endian */ if (bit8[i] == 1) byteval += d; else if (bit8[i] == 0) byteval += 0; else return 0x100; d <<= 1; } return byteval; } void inc_bufpos() { bufpos = (bufpos+1) % HEADLEN; } int compare() { int i=0, j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break; j--; i++; } return i; } /* ui8_t xorbyte(int pos) { return xframe[pos] ^ mask[pos % MASK_LEN]; } */ ui8_t framebyte(int pos) { return frame[pos]; } /* ------------------------------------------------------------------------------------ */ #define GPS_WEEK1024 1 #define WEEKSEC 604800 /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = GpsWeek * 7 + (GpsSeconds / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; *Day = J - 2447 * M / 80; J = M / 11; *Month = M + 2 - (12 * J); *Year = 100 * (C - 49) + Y + J; } /* ------------------------------------------------------------------------------------ */ #define pos_FrameNb 0x08 // 2 byte #define pos_SondeID 0x0C // 8 byte // oder: 0x0A, 10 byte? #define pos_CalData 0x17 // 1 byte, counter 0x00..0x1f #define pos_Calfreq 0x1A // 2 byte, calfr 0x00 #define posGPS_TOW 0x48 // 4 byte #define posGPS_PRN 0x4E // 12*5 bit in 8 byte #define posGPS_STATUS 0x56 // 12 byte #define posGPS_DATA 0x62 // 12*8 byte #define pos_PTU 0x2C // 24 byte #define pos_AuxData 0xC8 // 8 byte #define BLOCK_CFG 0x6510 // frame[pos_FrameNb-2], frame[pos_FrameNb-1] #define BLOCK_PTU 0x690C #define BLOCK_GPS 0x673D // frame[posGPS_TOW-2], frame[posGPS_TOW-1] #define BLOCK_AUX 0x6805 #define LEN_CFG (2*(BLOCK_CFG & 0xFF)) #define LEN_GPS (2*(BLOCK_GPS & 0xFF)) #define LEN_PTU (2*(BLOCK_PTU & 0xFF)) int crc16(int start, int len) { int crc16poly = 0x1021; int rem = 0xFFFF, i, j; int byte; if (start+len >= FRAME_LEN) return -1; for (i = 0; i < len; i++) { byte = framebyte(start+i); rem = rem ^ (byte << 8); for (j = 0; j < 8; j++) { if (rem & 0x8000) { rem = (rem << 1) ^ crc16poly; } else { rem = (rem << 1); } rem &= 0xFFFF; } } return rem; } int get_FrameNb() { int i; unsigned byte; ui8_t frnr_bytes[2]; int frnr; for (i = 0; i < 2; i++) { byte = framebyte(pos_FrameNb + i); frnr_bytes[i] = byte; } frnr = frnr_bytes[0] + (frnr_bytes[1] << 8); gpx.frnr = frnr; return 0; } int get_SondeID() { int i, ret=0; unsigned byte; ui8_t sondeid_bytes[10]; int crc_frame, crc; // BLOCK_CFG == frame[pos_FrameNb-2 .. pos_FrameNb-1] ? crc_frame = framebyte(pos_FrameNb+LEN_CFG) | (framebyte(pos_FrameNb+LEN_CFG+1) << 8); crc = crc16(pos_FrameNb, LEN_CFG); /* if (option_crc) { //fprintf(stdout, " (%04X:%02X%02X) ", BLOCK_CFG, frame[pos_FrameNb-2], frame[pos_FrameNb-1]); fprintf(stdout, " [%04X:%04X] ", crc_frame, crc); } */ ret = 0; if ( 0 && option_crc && crc != crc_frame) { ret = -2; // erst wichtig, wenn Cal/Cfg-Data } for (i = 0; i < 8; i++) { byte = framebyte(pos_SondeID + i); if ((byte < 0x20) || (byte > 0x7E)) return -1; sondeid_bytes[i] = byte; } for (i = 0; i < 8; i++) { gpx.id[i] = sondeid_bytes[i]; } gpx.id[8] = '\0'; return ret; } char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; int get_GPStime() { int i, ret=0; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime = 0, // 32bit day; int ms; int crc_frame, crc; // BLOCK_GPS == frame[posGPS_TOW-2 .. posGPS_TOW-1] ? crc_frame = framebyte(posGPS_TOW+LEN_GPS) | (framebyte(posGPS_TOW+LEN_GPS+1) << 8); crc = crc16(posGPS_TOW, LEN_GPS); /* if (option_crc) { //fprintf(stdout, " (%04X:%02X%02X) ", BLOCK_GPS, frame[posGPS_TOW-2], frame[posGPS_TOW-1]); fprintf(stdout, " [%04X:%04X] ", crc_frame, crc); } */ ret = 0; if (option_crc && crc != crc_frame) { ret = -2; } for (i = 0; i < 4; i++) { byte = framebyte(posGPS_TOW + i); gpstime_bytes[i] = byte; } memcpy(&gpstime, gpstime_bytes, 4); ms = gpstime % 1000; gpstime /= 1000; gpx.gpssec = gpstime; day = (gpstime / (24 * 3600)) % 7; // besser CRC-check, da auch //if ((day < 0) || (day > 6)) return -1; // gpssec=604800,604801 beobachtet gpstime %= (24*3600); gpx.wday = day; gpx.std = gpstime / 3600; gpx.min = (gpstime % 3600) / 60; gpx.sek = gpstime % 60 + ms/1000.0; return ret; } int get_Aux() { int i; unsigned short byte; for (i = 0; i < 4; i++) { byte = framebyte(pos_AuxData+2*i)+(framebyte(pos_AuxData+2*i+1)<<8); gpx.aux[i] = byte; } return 0; } int get_Cal() { int i; unsigned byte; ui8_t calfr = 0; //ui8_t burst = 0; int freq = 0; ui8_t freq_bytes[2]; byte = framebyte(pos_CalData); calfr = byte; if (option_verbose == 4) { fprintf(stdout, "\n"); fprintf(stdout, "[%5d] ", gpx.frnr); fprintf(stdout, " 0x%02x:", calfr); } for (i = 0; i < 16; i++) { byte = framebyte(pos_CalData+1+i); if (option_verbose == 4) { fprintf(stdout, " %02x", byte); } } if (option_aux) { get_Aux(); if (option_verbose == 4) { fprintf(stdout, " # "); for (i = 0; i < 8; i++) { byte = framebyte(pos_AuxData+i); fprintf(stdout, "%02x ", byte); } } else { if (gpx.aux[0] != 0 || gpx.aux[1] != 0 || gpx.aux[2] != 0 || gpx.aux[3] != 0) { fprintf(stdout, " # %04x %04x %04x %04x", gpx.aux[0], gpx.aux[1], gpx.aux[2], gpx.aux[3]); } } } if (calfr == 0x00) { for (i = 0; i < 2; i++) { byte = framebyte(pos_Calfreq + i); freq_bytes[i] = byte; } byte = freq_bytes[0] + (freq_bytes[1] << 8); //fprintf(stdout, ":%04x ", byte); freq = 400000 + 10*byte; // kHz; gpx.freq = freq; fprintf(stdout, " : fq %d kHz", freq); } return 0; } /* ---------------------------------------------------------------------------------------------------- */ #include "nav_gps_vel.c" EPHEM_t alm[33]; //EPHEM_t eph[33][24]; EPHEM_t *ephs = NULL; SAT_t sat[33], sat1s[33]; ui8_t prn_le[12*5+4]; /* le - little endian */ int prnbits_le(ui16_t byte16, ui8_t bits[64], int block) { int i; /* letztes bit Ueberlauf, wenn 3. PRN = 32 */ for (i = 0; i < 15; i++) { bits[15*block+i] = byte16 & 1; byte16 >>= 1; } bits[60+block] = byte16 & 1; return byte16 & 1; } ui8_t prns[12], // PRNs in data sat_status[12]; int prn32toggle = 0x1, ind_prn32, prn32next; void prn12(ui8_t *prn_le, ui8_t prns[12]) { int i, j, d; for (i = 0; i < 12; i++) { prns[i] = 0; d = 1; for (j = 0; j < 5; j++) { if (prn_le[5*i+j]) prns[i] += d; d <<= 1; } } ind_prn32 = 32; for (i = 0; i < 12; i++) { // PRN-32 overflow if ( (prns[i] == 0) && (sat_status[i] & 0x0F) ) { // 5 bit: 0..31 if ( ((i % 3 == 2) && (prn_le[60+i/3] & 1)) // Spalte 2 || ((i % 3 != 2) && (prn_le[5*(i+1)] & 1)) ) { // Spalte 0,1 prns[i] = 32; ind_prn32 = i; } } else if ((sat_status[i] & 0x0F) == 0) { // erste beiden bits: 0x03 ? prns[i] = 0; } } prn32next = 0; if (ind_prn32 < 12) { // PRN-32 overflow if (ind_prn32 % 3 != 2) { // -> ind_prn32<11 // vorausgesetzt im Block folgt auf PRN-32 if ((sat_status[ind_prn32+1] & 0x0F) && prns[ind_prn32+1] > 1) { // entweder PRN-1 oder PRN-gerade // && prns[ind_prn32+1] != 3 ? for (j = 0; j < ind_prn32; j++) { if (prns[j] == (prns[ind_prn32+1]^prn32toggle) && (sat_status[j] & 0x0F)) break; } if (j < ind_prn32) { prn32toggle ^= 0x1; } else { for (j = ind_prn32+2; j < 12; j++) { if (prns[j] == (prns[ind_prn32+1]^prn32toggle) && (sat_status[j] & 0x0F)) break; } if (j < 12) { prn32toggle ^= 0x1; } } prns[ind_prn32+1] ^= prn32toggle; /* // nochmal testen for (j = 0; j < ind_prn32; j++) { if (prns[j] == prns[ind_prn32+1]) break; } if (j < ind_prn32) prns[ind_prn32+1] = 0; else { for (j = ind_prn32+2; j < 12; j++) { if (prns[j] == prns[ind_prn32+1]) break; } if (j < 12) prns[ind_prn32+1] = 0; } if (prns[ind_prn32+1] == 0) { prn32toggle ^= 0x1; } */ } prn32next = prns[ind_prn32+1]; // -> ind_prn32<11 && ind_prn32 % 3 != 2 } } } int calc_satpos_alm(EPHEM_t alm[], double t, SAT_t *satp) { double X, Y, Z, vX, vY, vZ; int j; int week; double cl_corr, cl_drift; for (j = 1; j < 33; j++) { if (alm[j].prn > 0) { // prn==j // Woche hat 604800 sec if (t-alm[j].toa > WEEKSEC/2) rollover = +1; else if (t-alm[j].toa < -WEEKSEC/2) rollover = -1; else rollover = 0; week = alm[j].week - rollover; /*if (j == 1)*/ gpx.week = week + GPS_WEEK1024*1024; if (option_vel >= 2) { GPS_SatellitePositionVelocity_Ephem( week, t, alm[j], &cl_corr, &cl_drift, &X, &Y, &Z, &vX, &vY, &vZ ); satp[alm[j].prn].clock_drift = cl_drift; satp[alm[j].prn].vX = vX; satp[alm[j].prn].vY = vY; satp[alm[j].prn].vZ = vZ; } else { GPS_SatellitePosition_Ephem( week, t, alm[j], &cl_corr, &X, &Y, &Z ); } satp[alm[j].prn].X = X; satp[alm[j].prn].Y = Y; satp[alm[j].prn].Z = Z; satp[alm[j].prn].clock_corr = cl_corr; } } return 0; } int calc_satpos_rnx(EPHEM_t eph[][24], double t, SAT_t *satp) { double X, Y, Z, vX, vY, vZ; int j, i, ti; int week; double cl_corr, cl_drift; double tdiff, td; for (j = 1; j < 33; j++) { // Woche hat 604800 sec tdiff = WEEKSEC; ti = 0; for (i = 0; i < 24; i++) { if (eph[j][i].prn > 0) { if (t-eph[j][i].toe > WEEKSEC/2) rollover = +1; else if (t-eph[j][i].toe < -WEEKSEC/2) rollover = -1; else rollover = 0; td = t-eph[j][i].toe - rollover*WEEKSEC; if (td < 0) td *= -1; if ( td < tdiff ) { tdiff = td; ti = i; week = eph[j][ti].week - rollover; gpx.week = eph[j][ti].gpsweek - rollover; } } } if (option_vel >= 2) { GPS_SatellitePositionVelocity_Ephem( week, t, eph[j][ti], &cl_corr, &cl_drift, &X, &Y, &Z, &vX, &vY, &vZ ); satp[eph[j][ti].prn].clock_drift = cl_drift; satp[eph[j][ti].prn].vX = vX; satp[eph[j][ti].prn].vY = vY; satp[eph[j][ti].prn].vZ = vZ; } else { GPS_SatellitePosition_Ephem( week, t, eph[j][ti], &cl_corr, &X, &Y, &Z ); } satp[eph[j][ti].prn].X = X; satp[eph[j][ti].prn].Y = Y; satp[eph[j][ti].prn].Z = Z; satp[eph[j][ti].prn].clock_corr = cl_corr; } return 0; } int calc_satpos_rnx2(EPHEM_t *eph, double t, SAT_t *satp) { double X, Y, Z, vX, vY, vZ; int j; int week; double cl_corr, cl_drift; double tdiff, td; int count, count0, satfound; for (j = 1; j < 33; j++) { count = count0 = 0; satfound = 0; // Woche hat 604800 sec tdiff = WEEKSEC; while (eph[count].prn > 0) { if (eph[count].prn == j) { satfound += 1; if (t - eph[count].toe > WEEKSEC/2) rollover = +1; else if (t - eph[count].toe < -WEEKSEC/2) rollover = -1; else rollover = 0; td = fabs( t - eph[count].toe - rollover*WEEKSEC); if ( td < tdiff ) { tdiff = td; week = eph[count].week - rollover; gpx.week = eph[count].gpsweek - rollover; count0 = count; } } count += 1; } if ( satfound ) { if (option_vel >= 2) { GPS_SatellitePositionVelocity_Ephem( week, t, eph[count0], &cl_corr, &cl_drift, &X, &Y, &Z, &vX, &vY, &vZ ); satp[j].clock_drift = cl_drift; satp[j].vX = vX; satp[j].vY = vY; satp[j].vZ = vZ; } else { GPS_SatellitePosition_Ephem( week, t, eph[count0], &cl_corr, &X, &Y, &Z ); } satp[j].X = X; satp[j].Y = Y; satp[j].Z = Z; satp[j].clock_corr = cl_corr; satp[j].ephtime = eph[count0].toe; } } return 0; } typedef struct { ui32_t tow; ui8_t status; int chips; int deltachips; } RANGE_t; RANGE_t range[33]; int prn[12]; // valide PRN 0,..,k-1 // pseudo.range = -df*pseudo.chips // df = lightspeed/(chips/sec)/2^10 const double df = 299792.458/1023.0/1024.0; //0.286183844 // c=299792458m/s, 1023000chips/s // dl = L1/(chips/sec)/4 const double dl = 1575.42/1.023/4.0; //385.0 // GPS L1 1575.42MHz=154*10.23MHz, dl=154*10/4 int get_pseudorange() { ui32_t gpstime; ui8_t gpstime_bytes[4]; ui8_t pseudobytes[4]; unsigned chipbytes, deltabytes; int i, j, k; ui8_t bytes[4]; ui16_t byte16; double pr0, prj; // GPS-TOW in ms for (i = 0; i < 4; i++) { gpstime_bytes[i] = framebyte(posGPS_TOW + i); } memcpy(&gpstime, gpstime_bytes, 4); // Sat Status for (i = 0; i < 12; i++) { sat_status[i] = framebyte(posGPS_STATUS + i); } // PRN-Nummern for (i = 0; i < 4; i++) { for (j = 0; j < 2; j++) { bytes[j] = frame[posGPS_PRN+2*i+j]; } memcpy(&byte16, bytes, 2); prnbits_le(byte16, prn_le, i); } prn12(prn_le, prns); // GPS Sat Pos (& Vel) if (almanac) calc_satpos_alm( alm, gpstime/1000.0, sat); if (ephem) calc_satpos_rnx2(ephs, gpstime/1000.0, sat); // GPS Sat Pos t -= 1s if (option_vel == 1) { if (almanac) calc_satpos_alm( alm, gpstime/1000.0-1, sat1s); if (ephem) calc_satpos_rnx2(ephs, gpstime/1000.0-1, sat1s); } k = 0; for (j = 0; j < 12; j++) { // Pseudorange/chips for (i = 0; i < 4; i++) { pseudobytes[i] = frame[posGPS_DATA+8*j+i]; } memcpy(&chipbytes, pseudobytes, 4); // delta_pseudochips / 385 for (i = 0; i < 3; i++) { pseudobytes[i] = frame[posGPS_DATA+8*j+4+i]; } deltabytes = 0; // bzw. pseudobytes[3]=0 (24 bit); deltabytes & (0xFF<<24) als memcpy(&deltabytes, pseudobytes, 3); // gemeinsamer offset relevant in --vel1 ! //if ( (prns[j] == 0) && (sat_status[j] & 0x0F) ) prns[j] = 32; range[prns[j]].tow = gpstime; range[prns[j]].status = sat_status[j]; if ( chipbytes == 0x7FFFFFFF || chipbytes == 0x55555555 ) { range[prns[j]].chips = 0; continue; } if (option_vergps != 8) { if ( chipbytes > 0x10000000 && chipbytes < 0xF0000000 ) { range[prns[j]].chips = 0; continue; }} range[prns[j]].chips = chipbytes; range[prns[j]].deltachips = deltabytes; /* if (range[prns[j]].deltachips == 0x555555) { range[prns[j]].deltachips = 0; continue; } */ if ( (prns[j] > 0) && ((sat_status[j] & 0x0F) == 0xF) && (dist(sat[prns[j]].X, sat[prns[j]].Y, sat[prns[j]].Z, 0, 0, 0) > 6700000) ) { for (i = 0; i < k; i++) { if (prn[i] == prns[j]) break; } if (i == k && prns[j] != exSat) { //if ( range[prns[j]].status & 0xF0 ) // Signalstaerke > 0 ? { prn[k] = prns[j]; k++; } } } } for (j = 0; j < 12; j++) { // 0x013FB0A4 sat[prns[j]].pseudorange = /*0x01400000*/ - range[prns[j]].chips * df; sat1s[prns[j]].pseudorange = -(range[prns[j]].chips - range[prns[j]].deltachips/dl)*df; //+ sat[prns[j]].clock_corr - sat1s[prns[j]].clock_corr sat[prns[j]].pseudorate = - range[prns[j]].deltachips * df / dl; sat[prns[j]].prn = prns[j]; sat1s[prns[j]].prn = prns[j]; } pr0 = (double)0x01400000; for (j = 0; j < k; j++) { prj = sat[prn[j]].pseudorange + sat[prn[j]].clock_corr; if (prj < pr0) pr0 = prj; } for (j = 0; j < k; j++) sat[prn[j]].PR = sat[prn[j]].pseudorange + sat[prn[j]].clock_corr - pr0 + 20e6; // es kann PRNs geben, die zeitweise stark abweichende PR liefern; // eventuell Standardabweichung ermitteln und fehlerhafte Sats weglassen for (j = 0; j < k; j++) { // sat/sat1s... PR-check sat1s[prn[j]].PR = sat1s[prn[j]].pseudorange + sat[prn[j]].clock_corr - pr0 + 20e6; } return k; } int get_GPSvel(double lat, double lon, double vel_ecef[3], double *vH, double *vD, double *vU) { // ECEF-Velocities // ECEF-Vel -> NorthEastUp double phi = lat*M_PI/180.0; double lam = lon*M_PI/180.0; double vN = -vel_ecef[0]*sin(phi)*cos(lam) - vel_ecef[1]*sin(phi)*sin(lam) + vel_ecef[2]*cos(phi); double vE = -vel_ecef[0]*sin(lam) + vel_ecef[1]*cos(lam); *vU = vel_ecef[0]*cos(phi)*cos(lam) + vel_ecef[1]*cos(phi)*sin(lam) + vel_ecef[2]*sin(phi); // NEU -> HorDirVer *vH = sqrt(vN*vN+vE*vE); *vD = atan2(vE, vN) * 180 / M_PI; if (*vD < 0) *vD += 360; return 0; } double DOP[4]; int get_GPSkoord(int N) { double lat, lon, alt, rx_cl_bias; double vH, vD, vU; double lat1s, lon1s, alt1s, lat0 , lon0 , alt0 , pos0_ecef[3]; double pos_ecef[3], pos1s_ecef[3], dpos_ecef[3], vel_ecef[3], dvel_ecef[3]; double gdop, gdop0 = 1000.0; //double hdop, vdop, pdop; int i0, i1, i2, i3, j, k, n; int nav_ret = 0; int num = 0; SAT_t Sat_A[4]; SAT_t Sat_B[12]; // N <= 12 SAT_t Sat_B1s[12]; SAT_t Sat_C[12]; // 11 double diter; int exN = -1; if (option_vergps == 8) { fprintf(stdout, " sats: "); for (j = 0; j < N; j++) fprintf(stdout, "%02d ", prn[j]); fprintf(stdout, "\n"); } gpx.lat = gpx.lon = gpx.alt = 0; if (option_vergps != 2) { for (i0=0;i0 0 && gdop < gdop0) { // wenn fehlerhafter Sat, diter wohl besserer Indikator gpx.lat = lat; gpx.lon = lon; gpx.alt = alt; gpx.dop = gdop; gpx.diter = diter; gpx.sats[0] = prn[i0]; gpx.sats[1] = prn[i1]; gpx.sats[2] = prn[i2]; gpx.sats[3] = prn[i3]; gdop0 = gdop; if (option_vel == 4) { gpx.vH = vH; gpx.vD = vD; gpx.vU = vU; } } } }}}} } if (option_vergps == 8 || option_vergps == 2) { for (j = 0; j < N; j++) Sat_B[j] = sat[prn[j]]; for (j = 0; j < N; j++) Sat_B1s[j] = sat1s[prn[j]]; NAV_bancroft1(N, Sat_B, pos_ecef, &rx_cl_bias); ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt); gdop = -1; if (calc_DOPn(N, Sat_B, pos_ecef, DOP) == 0) { gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]); } NAV_LinP(N, Sat_B, pos_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias); if (option_iter) { for (j = 0; j < 3; j++) pos_ecef[j] += dpos_ecef[j]; ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt); } gpx.diter = dist(0, 0, 0, dpos_ecef[0], dpos_ecef[1], dpos_ecef[2]); // Sat mit schlechten Daten suchen if (gpx.diter > d_err) { if (N > 5) { // N > 4 kann auch funktionieren for (n = 0; n < N; n++) { k = 0; for (j = 0; j < N; j++) { if (j != n) { Sat_C[k] = Sat_B[j]; k++; } } for (j = 0; j < 3; j++) pos0_ecef[j] = 0; NAV_bancroft1(N-1, Sat_C, pos0_ecef, &rx_cl_bias); NAV_LinP(N-1, Sat_C, pos0_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias); diter = dist(0, 0, 0, dpos_ecef[0], dpos_ecef[1], dpos_ecef[2]); ecef2elli(pos0_ecef[0], pos0_ecef[1], pos0_ecef[2], &lat0, &lon0, &alt0); if (diter < gpx.diter) { gpx.diter = diter; for (j = 0; j < 3; j++) pos_ecef[j] = pos0_ecef[j]; lat = lat0; lon = lon0; alt = alt0; exN = n; } } if (exN >= 0) { if (prn[exN] == prn32next) prn32toggle ^= 0x1; for (k = exN; k < N-1; k++) { Sat_B[k] = Sat_B[k+1]; prn[k] = prn[k+1]; if (option_vel == 1) { Sat_B1s[k] = Sat_B1s[k+1]; } } N = N-1; if (calc_DOPn(N, Sat_B, pos_ecef, DOP) == 0) { gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]); } } } /* if (exN < 0 && prn32next > 0) { //prn32next used in pre-fix? prn32toggle ^= 0x1; } */ } if (option_vel == 1) { NAV_bancroft1(N, Sat_B1s, pos1s_ecef, &rx_cl_bias); if (option_iter) { NAV_LinP(N, Sat_B1s, pos1s_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias); for (j = 0; j < 3; j++) pos1s_ecef[j] += dpos_ecef[j]; } for (j = 0; j < 3; j++) vel_ecef[j] = pos_ecef[j] - pos1s_ecef[j]; get_GPSvel(lat, lon, vel_ecef, &vH, &vD, &vU); ecef2elli(pos1s_ecef[0], pos1s_ecef[1], pos1s_ecef[2], &lat1s, &lon1s, &alt1s); if (option_vergps == 8) { fprintf(stdout, "\ndeltachips1s lat: %.6f , lon: %.6f , alt: %.2f ", lat1s, lon1s, alt1s); fprintf(stdout, " vH: %4.1f D: %5.1f° vV: %3.1f ", vH, vD, vU); fprintf(stdout, "\n"); } } if (option_vel >= 2) { //fprintf(stdout, "\nP(%.1f,%.1f,%.1f) \n", pos_ecef[0], pos_ecef[1], pos_ecef[2]); vel_ecef[0] = vel_ecef[1] = vel_ecef[2] = 0; NAV_LinV(N, Sat_B, pos_ecef, vel_ecef, 0.0, dvel_ecef, &rx_cl_bias); for (j=0; j<3; j++) vel_ecef[j] += dvel_ecef[j]; //fprintf(stdout, " V(%.1f,%.1f,%.1f) ", vel_ecef[0], vel_ecef[1], vel_ecef[2]); //fprintf(stdout, " rx_vel_bias: %.1f \n", rx_cl_bias); /* 2. Iteration: NAV_LinV(N, Sat_B, pos_ecef, vel_ecef, rx_cl_bias, dvel_ecef, &rx_cl_bias); for (j=0; j<3; j++) vel_ecef[j] += dvel_ecef[j]; //fprintf(stdout, " V(%.1f,%.1f,%.1f) ", vel_ecef[0], vel_ecef[1], vel_ecef[2]); //fprintf(stdout, " rx_vel_bias: %.1f \n", rx_cl_bias); */ get_GPSvel(lat, lon, vel_ecef, &vH, &vD, &vU); } if (option_vergps == 8) { fprintf(stdout, "bancroft[%2d] lat: %.6f , lon: %.6f , alt: %.2f ", N, lat, lon, alt); fprintf(stdout, " (d:%.1f)", gpx.diter); if (option_vel) { fprintf(stdout, " vH: %4.1f D: %5.1f° vV: %3.1f ", vH, vD, vU); } fprintf(stdout, " DOP["); for (j = 0; j < N; j++) { fprintf(stdout, "%d", prn[j]); if (j < N-1) fprintf(stdout, ","); else fprintf(stdout, "] %.1f ", gdop); } fprintf(stdout, "\n"); } if (option_vergps == 2) { gpx.lat = lat; gpx.lon = lon; gpx.alt = alt; gpx.dop = gdop; num = N; if (option_vel) { gpx.vH = vH; gpx.vD = vD; gpx.vU = vU; } } } return num; } /* ------------------------------------------------------------------------------------ */ int print_position() { // GPS-Hoehe ueber Ellipsoid int j, k, n = 0; int err1, err2; err1 = 0; if (!option_verbose) err1 = err_gps; err1 |= get_FrameNb(); err1 |= get_SondeID(); err2 = err1 | err_gps; //err2 |= get_GPSweek(); err2 |= get_GPStime(); if (!err2 && (almanac || ephem)) { k = get_pseudorange(); if (k >= 4) { n = get_GPSkoord(k); } } if (!err1) { fprintf(stdout, "[%5d] ", gpx.frnr); fprintf(stdout, "(%s) ", gpx.id); } if (!err2) { if (option_verbose) { Gps2Date(gpx.week, gpx.gpssec, &gpx.jahr, &gpx.monat, &gpx.tag); //fprintf(stdout, "(W %d) ", gpx.week); fprintf(stdout, "(%04d-%02d-%02d) ", gpx.jahr, gpx.monat, gpx.tag); } fprintf(stdout, "%s ", weekday[gpx.wday]); // %04.1f: wenn sek >= 59.950, wird auf 60.0 gerundet fprintf(stdout, "%02d:%02d:%06.3f", gpx.std, gpx.min, gpx.sek); if (n > 0) { fprintf(stdout, " "); if (almanac) fprintf(stdout, " lat: %.4f lon: %.4f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt); else fprintf(stdout, " lat: %.5f lon: %.5f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt); if (option_verbose && option_vergps != 8) { fprintf(stdout, " (d:%.1f)", gpx.diter); } if (option_vel /*&& option_vergps >= 2*/) { fprintf(stdout," vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU); } if (option_verbose) { if (option_vergps != 2) { fprintf(stdout, " DOP[%02d,%02d,%02d,%02d] %.1f", gpx.sats[0], gpx.sats[1], gpx.sats[2], gpx.sats[3], gpx.dop); } else { // wenn option_vergps=2, dann n=N=k(-1) fprintf(stdout, " DOP["); for (j = 0; j < n; j++) { fprintf(stdout, "%d", prn[j]); if (j < n-1) fprintf(stdout, ","); else fprintf(stdout, "] %.1f ", gpx.dop); } } } } get_Cal(); if (option_vergps == 8 /*|| option_vergps == 2*/) { fprintf(stdout, "\n"); for (j = 0; j < 60; j++) { fprintf(stdout, "%d", prn_le[j]); if (j % 5 == 4) fprintf(stdout, " "); } fprintf(stdout, ": "); for (j = 0; j < 12; j++) fprintf(stdout, "%2d ", prns[j]); fprintf(stdout, "\n"); fprintf(stdout, " status: "); for (j = 0; j < 12; j++) fprintf(stdout, "%02X ", sat_status[j]); //range[prns[j]].status fprintf(stdout, "\n"); } } if (!err1) { fprintf(stdout, "\n"); //if (option_vergps == 8) fprintf(stdout, "\n"); } return err2; } void print_frame(int len) { int i; ui8_t byte; for (i = len; i < FRAME_LEN; i++) { frame[i] = 0; } if (option_raw) { for (i = 0; i < len; i++) { //byte = frame[i]; byte = framebyte(i); fprintf(stdout, "%02x", byte); } fprintf(stdout, "\n"); } else print_position(); } int main(int argc, char *argv[]) { FILE *fp, *fp_alm = NULL, *fp_eph = NULL; char *fpname; char bitbuf[BITS]; int bit_count = 0, byte_count = FRAMESTART, header_found = 0, byte, i; int bit, len; char *pbuf = NULL; #ifdef CYGWIN _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!fileloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] \n", fpname); fprintf(stderr, " file: audio.wav or raw_data\n"); fprintf(stderr, " options:\n"); fprintf(stderr, " --vel; --vel1, --vel2 (-g2)\n"); fprintf(stderr, " -v, -vx, -vv\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); fprintf(stderr, " -a, --almanac \n"); fprintf(stderr, " -e, --ephem \n"); fprintf(stderr, " -g1 (verbose GPS: 4 sats)\n"); fprintf(stderr, " -g2 (verbose GPS: all sats)\n"); fprintf(stderr, " -gg (vverbose GPS)\n"); fprintf(stderr, " --crc (CRC check GPS)\n"); fprintf(stderr, " --rawin1,2 (raw_data file)\n"); return 0; } else if ( (strcmp(*argv, "--vel") == 0) ) { option_vel = 4; } else if ( (strcmp(*argv, "--vel1") == 0) ) { option_vel = 1; if (option_vergps < 1) option_vergps = 2; } else if ( (strcmp(*argv, "--vel2") == 0) ) { option_vel = 2; if (option_vergps < 1) option_vergps = 2; } else if ( (strcmp(*argv, "--iter") == 0) ) { option_iter = 1; } else if ( (strcmp(*argv, "-v") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv") == 0) ) { option_verbose = 4; } else if ( (strcmp(*argv, "-vx") == 0) ) { option_aux = 1; } else if (strcmp(*argv, "--crc") == 0) { option_crc = 1; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 1; } else if ( (strcmp(*argv, "-a") == 0) || (strcmp(*argv, "--almanac") == 0) ) { ++argv; if (*argv) fp_alm = fopen(*argv, "r"); // txt-mode else return -1; if (fp_alm == NULL) fprintf(stderr, "[almanac] %s konnte nicht geoeffnet werden\n", *argv); } else if ( (strcmp(*argv, "-e") == 0) || (strncmp(*argv, "--ephem", 7) == 0) ) { ++argv; if (*argv) fp_eph = fopen(*argv, "rb"); // bin-mode else return -1; if (fp_eph == NULL) fprintf(stderr, "[rinex] %s konnte nicht geoeffnet werden\n", *argv); } else if ( (strcmp(*argv, "--dop") == 0) ) { ++argv; if (*argv) { dop_limit = atof(*argv); if (dop_limit <= 0 || dop_limit >= 100) dop_limit = 9.9; } else return -1; } else if ( (strcmp(*argv, "--der") == 0) ) { ++argv; if (*argv) { d_err = atof(*argv); if (d_err <= 0 || d_err >= 100000) d_err = 10000; else option_der = 1; } else return -1; } else if ( (strcmp(*argv, "--exsat") == 0) ) { ++argv; if (*argv) { exSat = atoi(*argv); if (exSat < 1 || exSat > 32) exSat = -1; } else return -1; } else if (strcmp(*argv, "-g1") == 0) { option_vergps = 1; } // verbose1 GPS else if (strcmp(*argv, "-g2") == 0) { option_vergps = 2; } // verbose2 GPS (bancroft) else if (strcmp(*argv, "-gg") == 0) { option_vergps = 8; } // vverbose GPS else if (strcmp(*argv, "--rawin1") == 0) { rawin = 2; } // raw_txt input1 else if (strcmp(*argv, "--rawin2") == 0) { rawin = 3; } // raw_txt input2 (SM) else if ( (strcmp(*argv, "--avg") == 0) ) { option_avg = 1; } else if (strcmp(*argv, "-b") == 0) { option_b = 1; } else { if (!rawin) fp = fopen(*argv, "rb"); else fp = fopen(*argv, "r"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } fileloaded = 1; } ++argv; } if (!fileloaded) fp = stdin; if (fp_alm) { i = read_SEMalmanac(fp_alm, alm); if (i == 0) { almanac = 1; } fclose(fp_alm); if (!option_der) d_err = 4000; } if (fp_eph) { /* i = read_RNXephemeris(fp_eph, eph); if (i == 0) { ephem = 1; almanac = 0; } fclose(fp_eph); */ ephs = read_RNXpephs(fp_eph); if (ephs) { ephem = 1; almanac = 0; } fclose(fp_eph); if (!option_der) d_err = 1000; } if (!rawin) { i = read_wav_header(fp); if (i) { fclose(fp); return -1; } while (!read_bits_fsk(fp, &bit, &len)) { if (len == 0) { // reset_frame(); if (byte_count > pos_SondeID+8) { if (byte_count < FRAME_LEN-20) err_gps = 1; print_frame(byte_count); err_gps = 0; } bit_count = 0; byte_count = FRAMESTART; header_found = 0; inc_bufpos(); buf[bufpos] = 'x'; continue; // ... } for (i = 0; i < len; i++) { inc_bufpos(); buf[bufpos] = 0x30 + bit; // Ascii if (!header_found) { if (compare() >= HEADLEN) header_found = 1; } else { bitbuf[bit_count] = bit; bit_count++; if (bit_count == BITS) { bit_count = 0; byte = bits2byte(bitbuf); frame[byte_count] = byte; byte_count++; if (byte_count == FRAME_LEN) { byte_count = FRAMESTART; header_found = 0; //inc_bufpos(); //buf[bufpos] = 'x'; print_frame(FRAME_LEN); } } } } if (header_found && option_b) { bitstart = 1; while ( byte_count < FRAME_LEN ) { if (read_rawbit(fp, &bit) == EOF) break; bitbuf[bit_count] = bit; bit_count++; if (bit_count == BITS) { bit_count = 0; byte = bits2byte(bitbuf); frame[byte_count] = byte; byte_count++; } } header_found = 0; print_frame(byte_count); byte_count = FRAMESTART; } } } else //if (rawin) { if (rawin == 3) frameofs = 5; while (1 > 0) { pbuf = fgets(buffer_rawin, rawin*FRAME_LEN+4, fp); if (pbuf == NULL) break; buffer_rawin[rawin*FRAME_LEN+1] = '\0'; len = strlen(buffer_rawin) / rawin; if (len > pos_SondeID+8) { for (i = 0; i < len-frameofs; i++) { //%2x SCNx8=%hhx(inttypes.h) sscanf(buffer_rawin+rawin*i, "%2hhx", frame+frameofs+i); // wenn ohne %hhx: sscanf(buffer_rawin+rawin*i, "%2x", &byte); frame[frameofs+i] = (ui8_t)byte; } if (len < FRAME_LEN-20) err_gps = 1; print_frame(len); err_gps = 0; } } } free(ephs); fclose(fp); return 0; }