/* * radiosondes RS41-SG(P) * author: zilog80 * * compile: * gcc rs41iq.c -lm -o rs41iq * (includes bch_ecc.c) * usage: * ./rs41iq [options] audio.wav * options: * -v, -vx, -vv (info, aux, info/conf) * -r, --raw * -i, --invert * -b (alt. Demod.) * --crc (check CRC) * --ecc2 (Reed-Solomon) * --ptu (temperature) * --iq * --iq2==--iq3 */ #include #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef unsigned short ui16_t; typedef unsigned int ui32_t; typedef short i16_t; typedef int i32_t; #include "bch_ecc.c" // RS/ecc/ typedef struct { int typ; int msglen; int msgpos; int parpos; int hdrlen; int frmlen; } rscfg_t; rscfg_t cfg_rs41 = { 41, (320-56)/2, 56, 8, 8, 320}; typedef struct { int frnr; char id[9]; int week; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; float sek; double lat; double lon; double alt; double vN; double vE; double vU; double vH; double vD; double vD2; float T; ui32_t crc; } gpx_t; gpx_t gpx; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_inv = 0, // invertiert Signal option_res = 0, // genauere Bitmessung option_crc = 0, // check CRC option_avg = 0, // moving average option_b = 0, option_ecc = 0, // Reed-Solomon ECC option_sat = 0, // GPS sat data option_ptu = 0, option_len = 0, option_iq = 0, wavloaded = 0; int wav_channel = 0; // audio channel: left int rawin = 0; #define HEADOFS 24 // HEADOFS+HEADLEN <= 64 #define HEADLEN 32 // HEADOFS+HEADLEN mod 8 = 0 #define FRAMESTART ((HEADOFS+HEADLEN)/8) /* 10 B6 CA 11 22 96 12 F8 */ char header[] = "0000100001101101010100111000100001000100011010010100100000011111"; char buf[HEADLEN+1] = "x"; int bufpos = -1; #define NDATA_LEN 320 // std framelen 320 #define XDATA_LEN 198 #define FRAME_LEN (NDATA_LEN+XDATA_LEN) // max framelen 518 ui8_t //xframe[FRAME_LEN] = { 0x10, 0xB6, 0xCA, 0x11, 0x22, 0x96, 0x12, 0xF8}, = xorbyte( frame) frame[FRAME_LEN] = { 0x86, 0x35, 0xf4, 0x40, 0x93, 0xdf, 0x1a, 0x60}; // = xorbyte(xframe) char buffer_rawin[3*FRAME_LEN+12]; //## rawin1: buffer_rawin[2*FRAME_LEN+12]; int frameofs = 0; #define MASK_LEN 64 ui8_t mask[MASK_LEN] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98, 0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26, 0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1, 0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1, 0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C, 0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61, 0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23, 0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1}; /* LFSR: ab i=8 (mod 64): * m[16+i] = m[i] ^ m[i+2] ^ m[i+4] ^ m[i+6] * ________________3205590EF944C6262160C2EA795D6DA15469470CDCE85CF1 * F776827F0799A22C937C3063F5102E61D0BCB4B606AAF423786E3BAEBF7B4CC196833E51B1490898 */ /* ------------------------------------------------------------------------------------ */ int LOG2N; int N_DFT, M_DFT; int N_IQBUF; double complex *raw_iqbuf = NULL; double complex *rot_iqbuf = NULL; int Nvar = 0; float *bufvar = NULL; float xsum = 0, qsum = 0; float mu, bvar[FRAME_LEN]; /* ------------------------------------------------------------------------------------ */ // option_b: exakte Baudrate wichtig! // im Prinzip in sync-preamble/header ermittelbar #define BAUD_RATE 4800 int sample_rate = 0, bits_sample = 0, channels = 0; float samples_per_bit = 0; int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } int read_wav_header(FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if ((bits_sample != 8) && (bits_sample != 16)) return -1; samples_per_bit = sample_rate/(float)BAUD_RATE; fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit); return 0; } #define EOF_INT 0x1000000 #define LEN_movAvg 3 int movAvg[LEN_movAvg]; unsigned long sample_count = 0; int read_sample(FILE *fp, double *x) { // channels == 1 int i; short b = 0; for (i = 0; i < channels; i++) { // i = 0: links bzw. mono if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF; if (i == wav_channel) { if (bits_sample == 8) { b -= 128; } *x = b/128.0; if (bits_sample == 16) { *x /= 256.0; } } } return 0; } int read_csample(FILE *fp, double complex *z) { short x = 0, y = 0; if (fread( &x, bits_sample/8, 1, fp) != 1) return EOF; if (fread( &y, bits_sample/8, 1, fp) != 1) return EOF; *z = x + I*y; if (bits_sample == 8) { *z -= 128 + I*128; } *z /= 128.0; if (bits_sample == 16) { *z /= 256.0; } return 0; } int sample_head_start = 0; int sample_framestart = 0; int sample_posnoise = 0; double df = 0.0; int len_sq = 0; double V_noise = 0.0; double V_signal = 0.0; double SNRdB = 0.0; int read_signed_sample(FILE *fp, double *s) { // int = i32_t double x=0, x0=0; double complex z, w; static double complex z0; double gain = 1.0; if (option_iq) { if ( read_csample(fp, &z) == EOF ) return EOF; raw_iqbuf[sample_count % N_IQBUF] = z; double t = (double)(sample_count) / sample_rate; z *= cexp(-t*2*M_PI*df*I); w = z * conj(z0); x = gain * carg(w)/M_PI; // d1 //x = _gain * cimag(w) / (cabs(z0)*cabs(z0)); // for small angles ... d2 z0 = z; rot_iqbuf[sample_count % N_IQBUF] = z; if (sample_posnoise > 0) { if (sample_count >= sample_framestart && sample_count < sample_framestart+len_sq) { if (sample_count == sample_framestart) V_signal = 0.0; V_signal += cabs(z); } if (sample_count == sample_framestart+len_sq) V_signal /= (double)len_sq; if (sample_count >= sample_posnoise && sample_count < sample_posnoise+len_sq) { if (sample_count == sample_posnoise) V_noise = 0.0; V_noise += cabs(z); } if (sample_count == sample_posnoise+len_sq) { V_noise = V_noise/(double)len_sq; #if defined(DBG) || defined(DBG1) if (V_signal > 0 && V_noise > 0) { // iq-samples/V [-1..1] // dBw = 2*dBv, P=c*U*U // dBw = 2*10*log10(V/V0) SNRdB = 20.0 * log10(V_signal/V_noise+1e-20); fprintf(stderr, "SNR: %.2f dB\n", SNRdB); } #endif } } #ifdef DBG1 if ( sample_framestart > 0 && sample_count >= (unsigned long)sample_framestart && ((int)(sample_count-sample_framestart) % (int)(samples_per_bit*8.0) == 0) ) { double phase = carg(z); // ignore ISI ... fprintf(stderr, "%lu phase : %+.2f\n", sample_count, phase/M_PI); } #endif } else { if ( read_sample(fp, &x) == EOF ) return EOF; } *s = x; if (option_b) { bufvar[sample_count % Nvar] = x; x0 = bufvar[(sample_count+1) % Nvar]; xsum = xsum - x0 + x; qsum = qsum - x0*x0 + x*x; } sample_count++; return 0; } int par=1, par_alt=1; int read_bits_fsk(FILE *fp, int *bit, int *len) { static double sample; float l; int n; n = 0; do{ if ( read_signed_sample(fp, &sample) == EOF ) return EOF; par_alt = par; par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) n++; } while (par*par_alt > 0); l = (float)n / samples_per_bit; *len = (int)(l+0.5); if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1 else *bit = (1-par_alt)/2; // sdr#= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) sum += sample; if (sample * sample0 < 0) pars++; // wenn sample[0..n-1]=0 ... sample0 = sample; scount++; n++; } while (scount < bitgrenze); // n < samples_per_bit if (sum >= 0) *bit = 1; else *bit = 0; if (option_inv) *bit ^= 1; if (option_iq >= 2) { double h = 1.0; // modulation index, GFSK; h(rs41)=0.8? double complex z = 0; double complex X1 = 0; double complex X2 = 0; int cbit = 0; if (option_iq == 2) { double t = 1.0 / sample_rate; double f1 = -h*sample_rate/(2*samples_per_bit); double f2 = -f1; while (n > 0) { t = -n / (double)sample_rate; z = rot_iqbuf[(sample_count-n + N_IQBUF) % N_IQBUF]; X1 += z*cexp(-t*2*M_PI*f1*I); X2 += z*cexp(-t*2*M_PI*f2*I); n--; } } else { double complex xi1 = cexp(+I*M_PI*h/samples_per_bit); double complex xi2 = cexp(-I*M_PI*h/samples_per_bit); double complex x1 = xi1; double complex x2 = xi2; while (n > 0) { z = rot_iqbuf[(sample_count-n + N_IQBUF) % N_IQBUF]; X1 += z*x1; x1 *= xi1; X2 += z*x2; x2 *= xi2; n--; } } if (cabs(X1) < cabs(X2)) cbit = 1; else cbit = 0; #ifdef DBG2 fprintf(stderr, "bit: %d # X1: %+.4f %+.4fi | X2: %+.4f %+.4fi", *bit, creal(X1), cimag(X1), creal(X2), cimag(X2)); fprintf(stderr, " # |X1|: %.4f |X2|: %.4f", cabs(X1), cabs(X2)); fprintf(stderr, " # |X2|-|X1|: %+.4f", cabs(X2)-cabs(X1)); fprintf(stderr, " # [%c]", (cbit == *bit)?'+':'-'); fprintf(stderr, " (%lu)\n", sample_count); #endif *bit = cbit; } return pars; } /* ------------------------------------------------------------------------------------ */ double complex *xn, *Z, *w, *ew, *ewa; double *Hann, *db; int init_dft() { int i, k, n; int WLEN = M_DFT; xn = calloc(N_DFT, sizeof(complex double)); if (xn == NULL) return -1; Z = calloc(N_DFT, sizeof(complex double)); if (Z == NULL) return -1; ew = calloc(LOG2N, sizeof(complex double)); if (ew == NULL) return -1; db = calloc(N_DFT, sizeof(double)); if (db == NULL) return -1; Hann = calloc(N_DFT, sizeof(complex double)); if (Hann == NULL) return -1; /* for (i = 0; i < N_DFT; i++) Hann[i] = 0; for (i = 0; i < WLEN; i++) Hann[i] = 0.5 * (1 - cos( 2 * M_PI * i / (double)(WLEN-1) ) ); //Hann[i+(N-1-WLEN)/2] = 0.5 * (1 - cos( 2 * M_PI * i / (double)(WLEN-1) ) ); */ for (i = 0; i < M_DFT; i++) Hann[i] = 0.5 * (1 - cos( 2 * M_PI * i / (double)(M_DFT-1) ) ); for (n = 0; n < LOG2N; n++) { k = 1 << n; ew[n] = cexp(-I*M_PI/(double)k); } return 0; } int free_dft() { if (xn) { free(xn); xn = NULL; } if (Z ) { free(Z ); Z = NULL; } if (ew) { free(ew); ew = NULL; } if (db) { free(db); db = NULL; } if (Hann) { free(Hann); Hann = NULL; } return 0; } void dft2() { int s, l, l2, i, j, k; double complex w1, w2, T; for (i = 0; i < N_DFT; i++) Z[i] = /*(double complex)*/xn[i]; //Z = xn; j = 1; for (i = 1; i < N_DFT; i++) { if (i < j) { T = Z[j-1]; Z[j-1] = Z[i-1]; Z[i-1] = T; } k = N_DFT/2; while (k < j) { j = j - k; k = k/2; } j = j + k; } for (s = 0; s < LOG2N; s++) { l2 = 1 << s; l = l2 << 1; w1 = (double complex)1.0; w2 = cexp(-I*M_PI/(double)l2); //w2 = ew[s]; for (j = 1; j <= l2; j++) { for (i = j; i <= N_DFT; i += l) { k = i + l2; T = Z[k-1] * w1; Z[k-1] = Z[i-1] - T; Z[i-1] = Z[i-1] + T; } w1 = w1 * w2; } } } void db_power(double complex Z[], double db[]) { int i; for (i = 0; i < N_DFT; i++) { db[i] = 20.0 * log10(cabs(Z[i])/N_DFT+1e-20); } } float bin2freq(int k) { float fq = sample_rate * k / N_DFT; if (fq > sample_rate/2.0) fq -= sample_rate; return fq; } int max_bin() { int k, kmax; double max; max = 0; kmax = 0; for (k = 0; k < N_DFT; k++) { if (cabs(Z[k]) > max) { max = cabs(Z[k]); kmax = k; } } return kmax; } /* ------------------------------------------------------------------------------------ */ int bits2byte(char bits[]) { int i, byteval=0, d=1; for (i = 0; i < 8; i++) { // little endian /* for (i = 7; i >= 0; i--) { // big endian */ if (bits[i] == 1) byteval += d; else if (bits[i] == 0) byteval += 0; else return 0x100; d <<= 1; } return byteval; } void inc_bufpos() { bufpos = (bufpos+1) % HEADLEN; } int compare() { int i=0, j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break; j--; i++; } return i; } /* ui8_t xorbyte(int pos) { return xframe[pos] ^ mask[pos % MASK_LEN]; } */ ui8_t framebyte(int pos) { return frame[pos]; } /* ------------------------------------------------------------------------------------ */ /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = GpsWeek * 7 + (GpsSeconds / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; *Day = J - 2447 * M / 80; J = M / 11; *Month = M + 2 - (12 * J); *Year = 100 * (C - 49) + Y + J; } /* ------------------------------------------------------------------------------------ */ ui32_t u4(ui8_t *bytes) { // 32bit unsigned int ui32_t val = 0; memcpy(&val, bytes, 4); return val; } ui32_t u3(ui8_t *bytes) { // 24bit unsigned int int val24 = 0; val24 = bytes[0] | (bytes[1]<<8) | (bytes[2]<<16); // = memcpy(&val, bytes, 3), val &= 0x00FFFFFF; return val24; } int i3(ui8_t *bytes) { // 24bit signed int int val = 0, val24 = 0; val = bytes[0] | (bytes[1]<<8) | (bytes[2]<<16); val24 = val & 0xFFFFFF; if (val24 & 0x800000) val24 = val24 - 0x1000000; return val24; } ui32_t u2(ui8_t *bytes) { // 16bit unsigned int return bytes[0] | (bytes[1]<<8); } /* double r8(ui8_t *bytes) { double val = 0; memcpy(&val, bytes, 8); return val; } float r4(ui8_t *bytes) { float val = 0; memcpy(&val, bytes, 4); return val; } */ /* int crc16x(int start, int len) { int crc16poly = 0x1021; int rem = 0xFFFF, i, j; int xbyte; if (start+len+2 > FRAME_LEN) return -1; for (i = 0; i < len; i++) { xbyte = xorbyte(start+i); rem = rem ^ (xbyte << 8); for (j = 0; j < 8; j++) { if (rem & 0x8000) { rem = (rem << 1) ^ crc16poly; } else { rem = (rem << 1); } rem &= 0xFFFF; } } return rem; } */ int crc16(int start, int len) { int crc16poly = 0x1021; int rem = 0xFFFF, i, j; int byte; if (start+len+2 > FRAME_LEN) return -1; for (i = 0; i < len; i++) { byte = framebyte(start+i); rem = rem ^ (byte << 8); for (j = 0; j < 8; j++) { if (rem & 0x8000) { rem = (rem << 1) ^ crc16poly; } else { rem = (rem << 1); } rem &= 0xFFFF; } } return rem; } int check_CRC(ui32_t pos, ui32_t pck) { ui32_t crclen = 0, crcdat = 0; if (((pck>>8) & 0xFF) != frame[pos]) return -1; crclen = frame[pos+1]; if (pos + crclen + 4 > FRAME_LEN) return -1; crcdat = u2(frame+pos+2+crclen); if ( crcdat != crc16(pos+2, crclen) ) { return 1; // CRC NO } else return 0; // CRC OK } /* Pos: SubHeader, 1+1 byte (ID+LEN) 0x039: 7928 FrameNumber+SondeID +(0x050: 0732 CalFrames 0x00..0x32) 0x065: 7A2A PTU 0x093: 7C1E GPS1: RXM-RAW (0x02 0x10) Week, TOW, Sats 0x0B5: 7D59 GPS2: RXM-RAW (0x02 0x10) pseudorange, doppler 0x112: 7B15 GPS3: NAV-SOL (0x01 0x06) ECEF-POS, ECEF-VEL 0x12B: 7611 00 0x12B: 7Exx AUX-xdata */ #define crc_FRAME (1<<0) #define xor_FRAME 0x1713 // ^0x6E3B=0x7928 #define pck_FRAME 0x7928 #define pos_FRAME 0x039 #define pos_FrameNb 0x03B // 2 byte #define pos_SondeID 0x03D // 8 byte #define pos_CalData 0x052 // 1 byte, counter 0x00..0x32 #define pos_Calfreq 0x055 // 2 byte, calfr 0x00 #define pos_Calburst 0x05E // 1 byte, calfr 0x02 // ? #define pos_Caltimer 0x05A // 2 byte, calfr 0x02 ? #define pos_CalRSTyp 0x05B // 8 byte, calfr 0x21 (+2 byte in 0x22?) // weitere chars in calfr 0x22/0x23; weitere ID #define crc_PTU (1<<1) #define pck_PTU 0x7A2A // PTU #define pos_PTU 0x065 #define crc_GPS1 (1<<2) #define xor_GPS1 0x9667 // ^0xEA79=0x7C1E #define pck_GPS1 0x7C1E // RXM-RAW (0x02 0x10) #define pos_GPS1 0x093 #define pos_GPSweek 0x095 // 2 byte #define pos_GPSiTOW 0x097 // 4 byte #define pos_satsN 0x09B // 12x2 byte (1: SV, 1: quality,strength) #define crc_GPS2 (1<<3) #define pck_GPS2 0x7D59 // RXM-RAW (0x02 0x10) #define pos_GPS2 0x0B5 #define pos_minPR 0x0B7 // 4 byte #define pos_FF 0x0BB // 1 byte #define pos_dataSats 0x0BC // 12x(4+3) byte (4: pseudorange, 3: doppler) #define crc_GPS3 (1<<4) #define xor_GPS3 0xB9FF // ^0xC2EA=0x7B15 #define pck_GPS3 0x7B15 // NAV-SOL (0x01 0x06) #define pos_GPS3 0x112 #define pos_GPSecefX 0x114 // 4 byte #define pos_GPSecefY 0x118 // 4 byte #define pos_GPSecefZ 0x11C // 4 byte #define pos_GPSecefV 0x120 // 3*2 byte #define pos_numSats 0x126 // 1 byte #define pos_sAcc 0x127 // 1 byte #define pos_pDOP 0x128 // 1 byte #define crc_AUX (1<<5) #define pck_AUX 0x7E00 // LEN variable #define pos_AUX 0x12B #define crc_ZERO (1<<6) // LEN variable #define pck_ZERO 0x7600 ui8_t calibytes[51*16]; ui8_t calfrchk[51]; float Rf1, // ref-resistor f1 (750 Ohm) Rf2, // ref-resistor f2 (1100 Ohm) co1[3], // { -243.911 , 0.187654 , 8.2e-06 } calT1[3], // calibration T1 co2[3], // { -243.911 , 0.187654 , 8.2e-06 } calT2[3]; // calibration T2-Hum double c = 299.792458e6; double L1 = 1575.42e6; int get_SatData() { int i, n; int sv; ui32_t minPR; int Nfix; double pDOP, sAcc; fprintf(stdout, "[%d]\n", u2(frame+pos_FrameNb)); fprintf(stdout, "iTOW: 0x%08X", u4(frame+pos_GPSiTOW)); fprintf(stdout, " week: 0x%04X", u2(frame+pos_GPSweek)); fprintf(stdout, "\n"); minPR = u4(frame+pos_minPR); fprintf(stdout, "minPR: %d", minPR); fprintf(stdout, "\n"); for (i = 0; i < 12; i++) { n = i*7; sv = frame[pos_satsN+2*i]; if (sv == 0xFF) break; fprintf(stdout, " SV: %2d # ", sv); fprintf(stdout, "prMes: %.1f", u4(frame+pos_dataSats+n)/100.0 + minPR); fprintf(stdout, " "); fprintf(stdout, "doMes: %.1f", -i3(frame+pos_dataSats+n+4)/100.0*L1/c); fprintf(stdout, "\n"); } fprintf(stdout, "ECEF-POS: (%d,%d,%d)\n", (i32_t)u4(frame+pos_GPSecefX), (i32_t)u4(frame+pos_GPSecefY), (i32_t)u4(frame+pos_GPSecefZ)); fprintf(stdout, "ECEF-VEL: (%d,%d,%d)\n", (i16_t)u2(frame+pos_GPSecefV+0), (i16_t)u2(frame+pos_GPSecefV+2), (i16_t)u2(frame+pos_GPSecefV+4)); Nfix = frame[pos_numSats]; sAcc = frame[pos_sAcc]/10.0; pDOP = frame[pos_pDOP]/10.0; fprintf(stdout, "numSatsFix: %2d sAcc: %.1f pDOP: %.1f\n", Nfix, sAcc, pDOP); fprintf(stdout, "CRC: "); fprintf(stdout, " %04X", pck_GPS1); if (check_CRC(pos_GPS1, pck_GPS1)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); //fprintf(stdout, "[%+d]", check_CRC(pos_GPS1, pck_GPS1)); fprintf(stdout, " %04X", pck_GPS2); if (check_CRC(pos_GPS2, pck_GPS2)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); //fprintf(stdout, "[%+d]", check_CRC(pos_GPS2, pck_GPS2)); fprintf(stdout, " %04X", pck_GPS3); if (check_CRC(pos_GPS3, pck_GPS3)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); //fprintf(stdout, "[%+d]", check_CRC(pos_GPS3, pck_GPS3)); fprintf(stdout, "\n"); fprintf(stdout, "\n"); return 0; } int get_FrameNb() { int i; unsigned byte; ui8_t frnr_bytes[2]; int frnr; for (i = 0; i < 2; i++) { byte = framebyte(pos_FrameNb + i); frnr_bytes[i] = byte; } frnr = frnr_bytes[0] + (frnr_bytes[1] << 8); gpx.frnr = frnr; return 0; } int get_SondeID(int crc) { int i; unsigned byte; char sondeid_bytes[9]; if (crc == 0) { for (i = 0; i < 8; i++) { byte = framebyte(pos_SondeID + i); //if ((byte < 0x20) || (byte > 0x7E)) return -1; sondeid_bytes[i] = byte; } sondeid_bytes[8] = '\0'; if ( strncmp(gpx.id, sondeid_bytes, 8) != 0 ) { //for (i = 0; i < 51; i++) calfrchk[i] = 0; memset(calfrchk, 0, 51); memcpy(gpx.id, sondeid_bytes, 8); gpx.id[8] = '\0'; } } return 0; } int get_FrameConf() { int crc, err; ui8_t calfr; int i; crc = check_CRC(pos_FRAME, pck_FRAME); if (crc) gpx.crc |= crc_FRAME; err = crc; err |= get_FrameNb(); err |= get_SondeID(crc); if (crc == 0) { calfr = framebyte(pos_CalData); if (calfrchk[calfr] == 0) // const? { // 0x32 not constant for (i = 0; i < 16; i++) { calibytes[calfr*16 + i] = framebyte(pos_CalData+1+i); } calfrchk[calfr] = 1; } } return err; } int get_CalData() { memcpy(&Rf1, calibytes+61, 4); // 0x03*0x10+13 memcpy(&Rf2, calibytes+65, 4); // 0x04*0x10+ 1 memcpy(co1+0, calibytes+77, 4); // 0x04*0x10+13 memcpy(co1+1, calibytes+81, 4); // 0x05*0x10+ 1 memcpy(co1+2, calibytes+85, 4); // 0x05*0x10+ 5 memcpy(calT1+0, calibytes+89, 4); // 0x05*0x10+ 9 memcpy(calT1+1, calibytes+93, 4); // 0x05*0x10+13 memcpy(calT1+2, calibytes+97, 4); // 0x06*0x10+ 1 memcpy(co2+0, calibytes+293, 4); // 0x12*0x10+ 5 memcpy(co2+1, calibytes+297, 4); // 0x12*0x10+ 9 memcpy(co2+2, calibytes+301, 4); // 0x12*0x10+13 memcpy(calT2+0, calibytes+305, 4); // 0x13*0x10+ 1 memcpy(calT2+1, calibytes+309, 4); // 0x13*0x10+ 5 memcpy(calT2+2, calibytes+313, 4); // 0x13*0x10+ 9 return 0; } float get_Tc0(ui32_t f, ui32_t f1, ui32_t f2) { // y = (f - f1) / (f2 - f1); // y1 = (f - f1) / f2; // = (1 - f1/f2)*y float a = 3.9083e-3, // Pt1000 platinum resistance b = -5.775e-7, c = -4.183e-12; // below 0C, else C=0 float *cal = calT1; float Rb = (f1*Rf2-f2*Rf1)/(f2-f1), // ofs Ra = f * (Rf2-Rf1)/(f2-f1) - Rb, raw = Ra/1000.0, g_r = 0.8024*cal[0] + 0.0176, // empirisch r_o = 0.0705*cal[1] + 0.0011, // empirisch r = raw * g_r + r_o, t = (-a + sqrt(a*a + 4*b*(r-1)))/(2*b); // t>0: c=0 // R/R0 = 1 + at + bt^2 + c(t-100)t^3 , R0 = 1000 Ohm, t/Celsius return t; } float get_Tc(ui32_t f, ui32_t f1, ui32_t f2) { float *p = co1; float *c = calT1; float g = (float)(f2-f1)/(Rf2-Rf1), // gain Rb = (f1*Rf2-f2*Rf1)/(float)(f2-f1), // ofs Rc = f/g - Rb, //R = (Rc + c[1]) * c[0], //T = p[0] + p[1]*R + p[2]*R*R; R = Rc * c[0], T = (p[0] + p[1]*R + p[2]*R*R + c[1])*(1.0 + c[2]); return T; } int get_PTU() { int err=0, i; int bR, bc1, bT1, bc2, bT2; ui32_t meas[12]; float Tc = -273.15; float Tc0 = -273.15; get_CalData(); err = check_CRC(pos_PTU, pck_PTU); if (err) gpx.crc |= crc_PTU; if (err == 0) { for (i = 0; i < 12; i++) { meas[i] = u3(frame+pos_PTU+2+3*i); } bR = calfrchk[0x03] && calfrchk[0x04]; bc1 = calfrchk[0x04] && calfrchk[0x05]; bT1 = calfrchk[0x05] && calfrchk[0x06]; bc2 = calfrchk[0x12] && calfrchk[0x13]; bT2 = calfrchk[0x13]; if (bR && bc1 && bT1) { Tc = get_Tc(meas[0], meas[1], meas[2]); Tc0 = get_Tc0(meas[0], meas[1], meas[2]); } gpx.T = Tc; if (option_verbose == 4) { printf(" h: %8.2f # ", gpx.alt); // crc_GPS3 ? printf("1: %8d %8d %8d", meas[0], meas[1], meas[2]); printf(" # "); printf("2: %8d %8d %8d", meas[3], meas[4], meas[5]); printf(" # "); printf("3: %8d %8d %8d", meas[6], meas[7], meas[8]); printf(" # "); if (Tc > -273.0) { printf(" T: %8.4f , T0: %8.4f ", Tc, Tc0); } printf("\n"); if (gpx.alt > -100.0) { printf(" %9.2f ; %6.1f ; %6.1f ", gpx.alt, Rf1, Rf2); printf("; %10.6f ; %10.6f ; %10.6f ;", calT1[0], calT1[1], calT1[2]); printf(" %8d ; %8d ; %8d ", meas[0], meas[1], meas[2]); printf("; %10.6f ; %10.6f ; %10.6f ;", calT2[0], calT2[1], calT2[2]); printf(" %8d ; %8d ; %8d" , meas[6], meas[7], meas[8]); printf("\n"); } } } return err; } int get_GPSweek() { int i; unsigned byte; ui8_t gpsweek_bytes[2]; int gpsweek; for (i = 0; i < 2; i++) { byte = framebyte(pos_GPSweek + i); gpsweek_bytes[i] = byte; } gpsweek = gpsweek_bytes[0] + (gpsweek_bytes[1] << 8); //if (gpsweek < 0) { gpx.week = -1; return -1; } // (short int) gpx.week = gpsweek; return 0; } char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; int get_GPStime() { int i; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime = 0, // 32bit day; int ms; for (i = 0; i < 4; i++) { byte = framebyte(pos_GPSiTOW + i); gpstime_bytes[i] = byte; } memcpy(&gpstime, gpstime_bytes, 4); ms = gpstime % 1000; gpstime /= 1000; gpx.gpssec = gpstime; day = (gpstime / (24 * 3600)) % 7; //if ((day < 0) || (day > 6)) return -1; // besser CRC-check gpstime %= (24*3600); gpx.wday = day; gpx.std = gpstime / 3600; gpx.min = (gpstime % 3600) / 60; gpx.sek = gpstime % 60 + ms/1000.0; return 0; } int get_GPS1() { int err=0; // ((framebyte(pos_GPS1)<<8) | framebyte(pos_GPS1+1)) != pck_GPS1 ? if ( framebyte(pos_GPS1) != ((pck_GPS1>>8) & 0xFF) ) { gpx.crc |= crc_GPS1; return -1; } err = check_CRC(pos_GPS1, pck_GPS1); if (err) gpx.crc |= crc_GPS1; //err = 0; err |= get_GPSweek(); err |= get_GPStime(); return err; } int get_GPS2() { int err=0; err = check_CRC(pos_GPS2, pck_GPS2); if (err) gpx.crc |= crc_GPS2; return err; } #define EARTH_a 6378137.0 #define EARTH_b 6356752.31424518 #define EARTH_a2_b2 (EARTH_a*EARTH_a - EARTH_b*EARTH_b) double a = EARTH_a, b = EARTH_b, a_b = EARTH_a2_b2, e2 = EARTH_a2_b2 / (EARTH_a*EARTH_a), ee2 = EARTH_a2_b2 / (EARTH_b*EARTH_b); void ecef2elli(double X[], double *lat, double *lon, double *alt) { double phi, lam, R, p, t; lam = atan2( X[1] , X[0] ); p = sqrt( X[0]*X[0] + X[1]*X[1] ); t = atan2( X[2]*a , p*b ); phi = atan2( X[2] + ee2 * b * sin(t)*sin(t)*sin(t) , p - e2 * a * cos(t)*cos(t)*cos(t) ); R = a / sqrt( 1 - e2*sin(phi)*sin(phi) ); *alt = p / cos(phi) - R; *lat = phi*180/M_PI; *lon = lam*180/M_PI; } int get_GPSkoord() { int i, k; unsigned byte; ui8_t XYZ_bytes[4]; int XYZ; // 32bit double X[3], lat, lon, alt; ui8_t gpsVel_bytes[2]; short vel16; // 16bit double V[3], phi, lam, dir; for (k = 0; k < 3; k++) { for (i = 0; i < 4; i++) { byte = frame[pos_GPSecefX + 4*k + i]; XYZ_bytes[i] = byte; } memcpy(&XYZ, XYZ_bytes, 4); X[k] = XYZ / 100.0; for (i = 0; i < 2; i++) { byte = frame[pos_GPSecefV + 2*k + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8; V[k] = vel16 / 100.0; } // ECEF-Position ecef2elli(X, &lat, &lon, &alt); gpx.lat = lat; gpx.lon = lon; gpx.alt = alt; if ((alt < -1000) || (alt > 80000)) return -3; // ECEF-Velocities // ECEF-Vel -> NorthEastUp phi = lat*M_PI/180.0; lam = lon*M_PI/180.0; gpx.vN = -V[0]*sin(phi)*cos(lam) - V[1]*sin(phi)*sin(lam) + V[2]*cos(phi); gpx.vE = -V[0]*sin(lam) + V[1]*cos(lam); gpx.vU = V[0]*cos(phi)*cos(lam) + V[1]*cos(phi)*sin(lam) + V[2]*sin(phi); // NEU -> HorDirVer gpx.vH = sqrt(gpx.vN*gpx.vN+gpx.vE*gpx.vE); /* double alpha; alpha = atan2(gpx.vN, gpx.vE)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts) dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t) gpx.vD2 = dir; */ dir = atan2(gpx.vE, gpx.vN) * 180 / M_PI; if (dir < 0) dir += 360; gpx.vD = dir; return 0; } int get_GPS3() { int err=0; // ((framebyte(pos_GPS3)<<8) | framebyte(pos_GPS3+1)) != pck_GPS3 ? if ( framebyte(pos_GPS3) != ((pck_GPS3>>8) & 0xFF) ) { gpx.crc |= crc_GPS3; return -1; } err = check_CRC(pos_GPS3, pck_GPS3); if (err) gpx.crc |= crc_GPS3; err |= get_GPSkoord(); return err; } int get_Aux() { // // "Ozone Sounding with Vaisala Radiosonde RS41" user's guide // int i, auxlen, auxcrc, count7E, pos7E; count7E = 0; pos7E = pos_AUX; // 7Exx: xdata while ( pos7E < FRAME_LEN && framebyte(pos7E) == 0x7E ) { auxlen = framebyte(pos7E+1); auxcrc = framebyte(pos7E+2+auxlen) | (framebyte(pos7E+2+auxlen+1)<<8); if ( auxcrc == crc16(pos7E+2, auxlen) ) { if (count7E == 0) fprintf(stdout, "\n # xdata = "); else fprintf(stdout, " # "); //fprintf(stdout, " # %02x : ", framebyte(pos7E+2)); for (i = 1; i < auxlen; i++) { fprintf(stdout, "%c", framebyte(pos7E+2+i)); } count7E++; pos7E += 2+auxlen+2; } else { pos7E = FRAME_LEN; gpx.crc |= crc_AUX; } } i = check_CRC(pos7E, 0x7600); // 0x76xx: 00-padding block if (i) gpx.crc |= crc_ZERO; return count7E; } int get_Calconf(int out) { int i; unsigned byte; ui8_t calfr = 0; ui8_t burst = 0; ui16_t fw = 0; int freq = 0, f0 = 0, f1 = 0; char sondetyp[9]; int err = 0; byte = framebyte(pos_CalData); calfr = byte; err = check_CRC(pos_FRAME, pck_FRAME); if (option_verbose == 3) { fprintf(stdout, "\n"); // fflush(stdout); fprintf(stdout, "[%5d] ", gpx.frnr); fprintf(stdout, " 0x%02x: ", calfr); for (i = 0; i < 16; i++) { byte = framebyte(pos_CalData+1+i); fprintf(stdout, "%02x ", byte); } if (err == 0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]"); fprintf(stdout, " "); } if (out) { if (calfr == 0x01 && option_verbose /*== 2*/) { fw = framebyte(pos_CalData+6) | (framebyte(pos_CalData+7)<<8); if (err == 0) fprintf(stdout, ": fw 0x%04x ", fw); } if (calfr == 0x02 && option_verbose /*== 2*/) { byte = framebyte(pos_Calburst); burst = byte; // fw >= 0x4ef5, BK irrelevant? (burst-killtimer in 0x31?) if (err == 0) fprintf(stdout, ": BK %02X ", burst); if (err == 0 && option_verbose == 3) { // killtimer int kt = frame[0x5A] + (frame[0x5B] << 8); // short? if ( kt != 0xFFFF ) fprintf(stdout, ": kt 0x%04x = %dsec = %.1fmin ", kt, kt, kt/60.0); } } if (calfr == 0x00 && option_verbose) { byte = framebyte(pos_Calfreq) & 0xC0; // erstmal nur oberste beiden bits f0 = (byte * 10) / 64; // 0x80 -> 1/2, 0x40 -> 1/4 ; dann mal 40 byte = framebyte(pos_Calfreq+1); f1 = 40 * byte; freq = 400000 + f1+f0; // kHz; if (err == 0) fprintf(stdout, ": fq %d ", freq); } if (calfr == 0x31 && option_verbose == 3) { if (err == 0) { // fw >= 0x4ef5: default=[88 77]=0x7788sec=510min int bt = frame[0x59] + (frame[0x5A] << 8); // short? if ( bt != 0x0000 ) fprintf(stdout, ": bt 0x%04x = %dsec = %.1fmin ", bt, bt, bt/60.0); } } if (calfr == 0x21 && option_verbose /*== 2*/) { // eventuell noch zwei bytes in 0x22 for (i = 0; i < 9; i++) sondetyp[i] = 0; for (i = 0; i < 8; i++) { byte = framebyte(pos_CalRSTyp + i); if ((byte >= 0x20) && (byte < 0x7F)) sondetyp[i] = byte; else if (byte == 0x00) sondetyp[i] = '\0'; } if (err == 0) fprintf(stdout, ": %s ", sondetyp); } } return 0; } /* frame[pos_FRAME-1] == 0x0F: len == NDATA_LEN(320) frame[pos_FRAME-1] == 0xF0: len == FRAME_LEN(518) */ int frametype() { // -4..+4: 0xF0 -> -4 , 0x0F -> +4 int i; ui8_t b = frame[pos_FRAME-1]; int ft = 0; for (i = 0; i < 4; i++) { ft += ((b>>i)&1) - ((b>>(i+4))&1); } return ft; } /* ------------------------------------------------------------------------------------ */ /* (uses fec-lib by KA9Q) ka9q-fec: gcc -c init_rs_char.c gcc -c decode_rs_char.c #include "fec.h" // ka9q-fec void *rs; unsigned char codeword1[rs_N], codeword2[rs_N]; rs = init_rs_char( 8, 0x11d, 0, 1, rs_R, 0); // ka9q-fec301: p(x) = p[0]x^(N-1) + ... + p[N-2]x + p[N-1] // -> cw[i] = codeword[RS.N-1-i] */ #define rs_N 255 #define rs_R 24 #define rs_K (rs_N-rs_R) ui8_t cw1[rs_N], cw2[rs_N]; int rs41_ecc(int frmlen) { // richtige framelen wichtig fuer 0-padding int i, leak, ret = 0; int errors1, errors2; ui8_t err_pos1[rs_R], err_pos2[rs_R], err_val1[rs_R], err_val2[rs_R]; if (frmlen > FRAME_LEN) frmlen = FRAME_LEN; cfg_rs41.frmlen = frmlen; cfg_rs41.msglen = (frmlen-56)/2; // msgpos=56; leak = frmlen % 2; for (i = frmlen; i < FRAME_LEN; i++) frame[i] = 0; // FRAME_LEN-HDR = 510 = 2*255 for (i = 0; i < rs_R; i++) cw1[i] = frame[cfg_rs41.parpos+i ]; for (i = 0; i < rs_R; i++) cw2[i] = frame[cfg_rs41.parpos+i+rs_R]; for (i = 0; i < rs_K; i++) cw1[rs_R+i] = frame[cfg_rs41.msgpos+2*i ]; for (i = 0; i < rs_K; i++) cw2[rs_R+i] = frame[cfg_rs41.msgpos+2*i+1]; errors1 = rs_decode(cw1, err_pos1, err_val1); errors2 = rs_decode(cw2, err_pos2, err_val2); if (option_ecc == 2 && (errors1 < 0 || errors2 < 0)) { frame[pos_FRAME] = (pck_FRAME>>8)&0xFF; frame[pos_FRAME+1] = pck_FRAME&0xFF; frame[pos_PTU] = (pck_PTU >>8)&0xFF; frame[pos_PTU +1] = pck_PTU &0xFF; frame[pos_GPS1] = (pck_GPS1 >>8)&0xFF; frame[pos_GPS1 +1] = pck_GPS1 &0xFF; frame[pos_GPS2] = (pck_GPS2 >>8)&0xFF; frame[pos_GPS2 +1] = pck_GPS2 &0xFF; frame[pos_GPS3] = (pck_GPS3 >>8)&0xFF; frame[pos_GPS3 +1] = pck_GPS3 &0xFF; if (frametype() < -2) { for (i = NDATA_LEN + 7; i < FRAME_LEN-2; i++) frame[i] = 0; } for (i = 0; i < rs_K; i++) cw1[rs_R+i] = frame[cfg_rs41.msgpos+2*i ]; for (i = 0; i < rs_K; i++) cw2[rs_R+i] = frame[cfg_rs41.msgpos+2*i+1]; errors1 = rs_decode(cw1, err_pos1, err_val1); errors2 = rs_decode(cw2, err_pos2, err_val2); } // Wenn Fehler im 00-padding korrigiert wurden, // war entweder der frame zu kurz, oder // Fehler wurden falsch korrigiert; // allerdings ist bei t=12 die Wahrscheinlichkeit, // dass falsch korrigiert wurde mit 1/t! sehr gering. // check CRC32 // CRC32 OK: //for (i = 0; i < cfg_rs41.hdrlen; i++) frame[i] = data[i]; for (i = 0; i < rs_R; i++) { frame[cfg_rs41.parpos+ i] = cw1[i]; frame[cfg_rs41.parpos+rs_R+i] = cw2[i]; } for (i = 0; i < rs_K; i++) { // cfg_rs41.msglen <= rs_K frame[cfg_rs41.msgpos+ 2*i] = cw1[rs_R+i]; frame[cfg_rs41.msgpos+1+2*i] = cw2[rs_R+i]; } if (leak) { frame[cfg_rs41.msgpos+2*i] = cw1[rs_R+i]; } ret = errors1 + errors2; if (errors1 < 0 || errors2 < 0) { ret = 0; if (errors1 < 0) ret |= 0x1; if (errors2 < 0) ret |= 0x2; ret = -ret; } return ret; } /* ------------------------------------------------------------------------------------ */ int print_position(int ec) { int i; int err, err0, err1, err2, err3; int output, out_mask; err = get_FrameConf(); err1 = get_GPS1(); err2 = get_GPS2(); err3 = get_GPS3(); err0 = get_PTU(); out_mask = crc_FRAME|crc_GPS1|crc_GPS3; output = ((gpx.crc & out_mask) != out_mask); // (!err || !err1 || !err3); if (output) { if (!err) { fprintf(stdout, "[%5d] ", gpx.frnr); fprintf(stdout, "(%s) ", gpx.id); } if (!err1) { Gps2Date(gpx.week, gpx.gpssec, &gpx.jahr, &gpx.monat, &gpx.tag); fprintf(stdout, "%s ", weekday[gpx.wday]); fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%06.3f", gpx.jahr, gpx.monat, gpx.tag, gpx.std, gpx.min, gpx.sek); if (option_verbose == 3) fprintf(stdout, " (W %d)", gpx.week); } if (!err3) { fprintf(stdout, " "); fprintf(stdout, " lat: %.5f ", gpx.lat); fprintf(stdout, " lon: %.5f ", gpx.lon); fprintf(stdout, " alt: %.2f ", gpx.alt); //if (option_verbose) { //fprintf(stdout, " (%.1f %.1f %.1f) ", gpx.vN, gpx.vE, gpx.vU); fprintf(stdout," vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU); } } if (option_ptu && !err0) { if (gpx.T > -273.0) printf(" T=%.1fC ", gpx.T); } //if (output) { if (option_crc) { fprintf(stdout, " # "); if (option_ecc && ec >= 0 && (gpx.crc & 0x1F) != 0) { int pos, blk, len, crc; // unexpected blocks int flen = NDATA_LEN; if (frametype() < 0) flen += XDATA_LEN; pos = pos_FRAME; while (pos < flen-1) { blk = frame[pos]; // 0x80XX: encrypted block len = frame[pos+1]; // 0x76XX: 00-padding block crc = check_CRC(pos, blk<<8); fprintf(stdout, " %02X%02X", frame[pos], frame[pos+1]); fprintf(stdout, "[%d]", crc&1); pos = pos+2+len+2; } } else { fprintf(stdout, "["); for (i=0; i<5; i++) fprintf(stdout, "%d", (gpx.crc>>i)&1); fprintf(stdout, "]"); } if (option_ecc == 2) { if (ec > 0) fprintf(stdout, " (%d)", ec); if (ec < 0) { if (ec == -1) fprintf(stdout, " (-+)"); else if (ec == -2) fprintf(stdout, " (+-)"); else /*ec == -3*/ fprintf(stdout, " (--)"); } } } } get_Calconf(output); //if (output) { if (option_verbose > 1) get_Aux(); fprintf(stdout, "\n"); // fflush(stdout); } } err |= err1 | err3; return err; } void print_frame(int len) { int i, ec = 0, ft; gpx.crc = 0; //frame[pos_FRAME-1] == 0x0F: len == NDATA_LEN(320) //frame[pos_FRAME-1] == 0xF0: len == FRAME_LEN(518) ft = frametype(); if (ft > 2) len = NDATA_LEN; // STD-frames mit 00 auffuellen fuer Fehlerkorrektur if (len > NDATA_LEN && len < NDATA_LEN+XDATA_LEN-10) { if (ft < -2) { len = NDATA_LEN + 7; // std-O3-AUX-frame } } // AUX-frames mit vielen Fehlern besser mit 00 auffuellen for (i = len; i < FRAME_LEN-2; i++) { frame[i] = 0; } if (ft > 2 || len == NDATA_LEN) { frame[FRAME_LEN-2] = 0; frame[FRAME_LEN-1] = 0; } if (len > NDATA_LEN) len = FRAME_LEN; else len = NDATA_LEN; if (option_ecc) { ec = rs41_ecc(len); } if (option_raw) { /* for (i = 0; i < len; i++) { byte = framebyte(i); fprintf(stdout, "%02x", byte); } fprintf(stdout, "\n"); */ if (option_ecc == 2 && ec >= 0) { if (len < FRAME_LEN && frame[FRAME_LEN-1] != 0) len = FRAME_LEN; } for (i = 0; i < len; i++) { fprintf(stdout, "%02x", frame[i]); } if (option_ecc) { if (ec >= 0) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); if (option_ecc == 2 && ec > 0) fprintf(stdout, " (%d)", ec); } fprintf(stdout, "\n"); // fprintf(stdout, "\n"); } else if (option_sat) { get_SatData(); } else { print_position(ec); } } int main(int argc, char *argv[]) { FILE *fp; char *fpname; char bitbuf[8]; int bit_count = 0, byte_count = FRAMESTART, ft_len = FRAME_LEN, header_found = 0, byte, i, j; int bit, len, frmlen = FRAME_LEN; char *pbuf = NULL, *buf_sp = NULL; int sumQ, bitQ, Qerror_count; double ratioQ; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _fileno(stdin) #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, -vx, -vv (info, aux, info/conf)\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); //fprintf(stderr, " --avg (moving average)\n"); fprintf(stderr, " -b (alt. Demod.)\n"); fprintf(stderr, " --crc (check CRC)\n"); fprintf(stderr, " --ecc (Reed-Solomon)\n"); fprintf(stderr, " --std (std framelen 320)\n"); fprintf(stderr, " --std2 (full framelen 518)\n"); fprintf(stderr, " --sat (GPS Sat data)\n"); fprintf(stderr, " --ptu (temperature)\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if (strcmp(*argv, "-vx") == 0) { option_verbose = 2; } else if (strcmp(*argv, "-vv") == 0) { option_verbose = 3; } else if (strcmp(*argv, "-vvv") == 0) { option_verbose = 4; } else if (strcmp(*argv, "--crc") == 0) { option_crc = 1; } else if (strcmp(*argv, "--res") == 0) { option_res = 1; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 1; } else if ( (strcmp(*argv, "--avg") == 0) ) { option_avg = 1; } else if (strcmp(*argv, "-b") == 0) { option_b = 1; } else if (strcmp(*argv, "--ecc" ) == 0) { option_ecc = 1; } else if (strcmp(*argv, "--ecc2") == 0) { option_ecc = 2; } else if (strcmp(*argv, "--std" ) == 0) { option_len = 1; frmlen = 320; } // NDATA_LEN else if (strcmp(*argv, "--std2") == 0) { option_len = 2; frmlen = 518; } // NDATA_LEN+XDATA_LEN else if (strcmp(*argv, "--sat") == 0) { option_sat = 1; } else if (strcmp(*argv, "--ptu") == 0) { option_ptu = 1; } else if (strcmp(*argv, "--ch2") == 0) { wav_channel = 1; } // right channel (default: 0=left) else if (strcmp(*argv, "--rawin1") == 0) { rawin = 2; } // raw_txt input1 else if (strcmp(*argv, "--rawin2") == 0) { rawin = 3; } // raw_txt input2 else if (strcmp(*argv, "--iq") == 0) { option_iq = 1; } // differential/FM-demod else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; option_b = 1; } else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; option_b = 1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; if (option_ecc) { rs_init_RS255(); } if (!rawin) { i = read_wav_header(fp); if (i) { fclose(fp); return -1; } if (option_iq) { if (channels < 2) return -1; LOG2N = 0; M_DFT = samples_per_bit*256+0.5; while ( (1 << LOG2N) < M_DFT ) LOG2N++; LOG2N++; N_DFT = (1 << LOG2N); init_dft(); N_IQBUF = M_DFT + samples_per_bit*(64+16); raw_iqbuf = calloc(N_IQBUF+1, sizeof(complex double)); if (raw_iqbuf == NULL) return -1; rot_iqbuf = calloc(N_IQBUF+1, sizeof(complex double)); if (rot_iqbuf == NULL) return -1; len_sq = samples_per_bit*8; } if (option_b) { Nvar = 32*samples_per_bit; bufvar = (float *)calloc( Nvar+1, sizeof(float)); if (bufvar == NULL) return -1; for (i = 0; i < Nvar; i++) bufvar[i] = 0; } while (!read_bits_fsk(fp, &bit, &len)) { if (len == 0) { // reset_frame(); if (byte_count > pos_AUX) { print_frame(byte_count); bit_count = 0; byte_count = FRAMESTART; header_found = 0; } //inc_bufpos(); //buf[bufpos] = 'x'; continue; // ... } for (i = 0; i < len; i++) { inc_bufpos(); buf[bufpos] = 0x30 + bit; // Ascii if (!header_found) { if (compare() >= HEADLEN) header_found = 1; if (header_found && option_iq) { int buf_start = sample_count - (HEADOFS+HEADLEN+(len-i)+256)*samples_per_bit; while (buf_start < 0) buf_start += N_IQBUF; for (j = 0; j < M_DFT; j++) { xn[j] = Hann[j]*raw_iqbuf[(buf_start+j) % N_IQBUF]; // Hann[j]*buffer[(ptr + j + 1)%N]; } dft2(); db_power(Z, db); df = bin2freq(max_bin()); #if defined(DBG) || defined(DBG1) fprintf(stderr, "fq-ofs: %+.1f Hz\n", df); #endif // if |df| 1000.0) df = 0.0; sample_head_start = sample_count - (HEADOFS+HEADLEN+(len-i-1))*samples_per_bit; sample_framestart = sample_head_start + 64*samples_per_bit; sample_posnoise = sample_framestart + sample_rate*7/8.0; #ifdef DBG1 double phase0 = carg(rot_iqbuf[sample_head_start % N_IQBUF]); fprintf(stderr, "%lu phase0 : %+.2f\n", sample_count, phase0/M_PI); #endif } } else { bitbuf[bit_count] = bit; bit_count++; if (bit_count == 8) { bit_count = 0; byte = bits2byte(bitbuf); //xframe[byte_count] = byte; frame[byte_count] = byte ^ mask[byte_count % MASK_LEN]; byte_count++; if (byte_count == frmlen) { byte_count = FRAMESTART; header_found = 0; print_frame(frmlen); } } } } if (header_found && option_b) { bitstart = 1; sumQ = 0; Qerror_count = 0; ft_len = frmlen; while ( byte_count < frmlen ) { bitQ = read_rawbit(fp, &bit); // return: zeroX/bit (oder alternativ Varianz/bit) if ( bitQ == EOF) break; sumQ += bitQ; // zeroX/byte bitbuf[bit_count] = bit; bit_count++; if (bit_count == 8) { bit_count = 0; byte = bits2byte(bitbuf); //xframe[byte_count] = byte; frame[byte_count] = byte ^ mask[byte_count % MASK_LEN]; mu = xsum/(float)Nvar; bvar[byte_count] = qsum/(float)Nvar - mu*mu; if (byte_count > NDATA_LEN) { // Fehler erst ab minimaler framelen Zaehlen //ratioQ = sumQ/samples_per_bit; // approx: bei Rauschen zeroX/byte leider nicht linear in sample_rate //if (ratioQ > 0.7) { // sr=48k: 0.7, Schwelle, ab wann wahrscheinlich Rauschbit if (bvar[byte_count]*2 > bvar[byte_count-300]*3) { // Var(frame)/Var(noise) ca. 1:2 Qerror_count += 1; } } sumQ = 0; // Fenster fuer zeroXcount: 8 bit byte_count++; } if (Qerror_count == 4 && option_len == 0) { // framelen = 320 oder 518 ft_len = byte_count; Qerror_count += 1; } } header_found = 0; print_frame(ft_len); byte_count = FRAMESTART; } } if (option_b) { if (bufvar) { free(bufvar); bufvar = NULL; } } if (option_iq) { if (raw_iqbuf) { free(raw_iqbuf); raw_iqbuf = NULL; } if (rot_iqbuf) { free(rot_iqbuf); rot_iqbuf = NULL; } free_dft(); } } else //if (rawin) { if (rawin == 3) frameofs = 8; else frameofs = 0; while (1 > 0) { pbuf = fgets(buffer_rawin, rawin*FRAME_LEN+12, fp); if (pbuf == NULL) break; buffer_rawin[rawin*FRAME_LEN] = '\0'; if (rawin == 2) { buf_sp = strchr(buffer_rawin, ' '); if (buf_sp != NULL && buf_sp-buffer_rawin < rawin*FRAME_LEN) { buffer_rawin[buf_sp-buffer_rawin] = '\0'; } } len = strlen(buffer_rawin) / rawin; if (len > pos_SondeID+10) { for (i = 0; i < len; i++) { //%2x SCNx8=%hhx(inttypes.h) sscanf(buffer_rawin+rawin*i, "%2hhx", frame+frameofs+i); // wenn ohne %hhx: sscanf(buffer_rawin+rawin*i, "%2x", &byte); frame[frameofs+i] = (ui8_t)byte; } if (rawin == 3) { len += frameofs; if ((frame[NDATA_LEN-1]<<8)+frame[NDATA_LEN-2] == 0xc7ec) len = NDATA_LEN; //**// } print_frame(len); } } } fclose(fp); return 0; }