/* * iMet-4 / iMet-1-RS * Bell202 8N1 * gcc imet4iq.c -lm -o imet4iq ./imet4iq --iq imet4_iq.wav ./imet4iq --imet1 --iq imet1_iq.wav ./imet4iq fm_audio.wav # additional options: # --lpFM FM lowpass filter # --decFM FM decimate, reduce FM samples if imet1-IQ # --dc frequency correction # --json JSON output # -r output raw bytes */ #include #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif // optional JSON "version" // (a) set global // gcc -DVERSION_JSN [-I] ... #ifdef VERSION_JSN #include "version_jsn.h" #endif // or // (b) set local compiler option, e.g. // gcc -DVER_JSN_STR=\"0.0.2\" ... typedef unsigned char ui8_t; typedef unsigned short ui16_t; typedef unsigned int ui32_t; typedef char i8_t; typedef short i16_t; typedef int i32_t; #ifndef M_PI #define M_PI (3.1415926535897932384626433832795) #endif #define _2PI (6.2831853071795864769252867665590) #define LP_IQ 1 #define LP_FM 2 #define LP_IQFM 4 #define FM_DEC 2 #define FM_GAIN (0.8) int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_rawbits = 0, option_b = 1, option_json = 0; int rawhex = 0; // raw hex input /* ------------------------------------------------------------------------------------ */ typedef struct { int sr; // sample_rate int bps; // bits_sample bits/sample int nch; // channels int sel_ch; // select wav channel } pcm_t; int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } static int read_wav_header(pcm_t *pcm, FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; int sample_rate = 0, bits_sample = 0, channels = 0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4) && strncmp(txt, "RF64", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if (pcm->sel_ch < 0 || pcm->sel_ch >= channels) pcm->sel_ch = 0; // default channel: 0 //fprintf(stderr, "channel-In : %d\n", pcm->sel_ch+1); // nur wenn nicht IQ if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1; if (sample_rate == 900001) sample_rate -= 1; pcm->sr = sample_rate; pcm->bps = bits_sample; pcm->nch = channels; return 0; } typedef struct { FILE *fp; // int sr; // sample_rate int bps; // bits/sample int nch; // channels int ch; // select channel // float sps; // samples per symbol float br; // baud rate // ui32_t sample_in; ui32_t sample_fm; ui32_t sc; int M; float *bufs; float mv; ui32_t mv_pos; ui32_t pre_pos; // // IQ-data int opt_iq; int opt_iqdc; float complex iqbuf[2]; // float complex *rot_iqbuf; // dc offset int opt_dc; int locked; double dc; double Df; double dDf; float xsum; // decimate int opt_nolut; // default: LUT int opt_IFmin; int decM; ui32_t sr_base; ui32_t dectaps; ui32_t sample_decX; ui32_t lut_len; ui32_t sample_decM; float complex *decXbuffer; float complex *decMbuf; float complex *ex; // exp_lut double xlt_fq; // IF: lowpass int opt_lp; int lpIQ_bw; float lpIQ_fbw; int lpIQtaps; // ui32_t float *ws_lpIQ0; float *ws_lpIQ1; float *ws_lpIQ; float complex *lpIQ_buf; // FM: lowpass int lpFM_bw; int lpFMtaps; // ui32_t float *ws_lpFM; float *lpFM_buf; int opt_fmdec; int decFM; int sr_fm; int opt_imet1; } dsp_t; static int f32read_sample(dsp_t *dsp, float *s) { int i; unsigned int word = 0; short *b = (short*)&word; float *f = (float*)&word; for (i = 0; i < dsp->nch; i++) { if (fread( &word, dsp->bps/8, 1, dsp->fp) != 1) return EOF; if (i == dsp->ch) { // i = 0: links bzw. mono //if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128 //if (bits_sample == 16) sint = (short)b; if (dsp->bps == 32) { *s = *f; } else { if (dsp->bps == 8) { *b -= 128; } *s = *b/128.0; if (dsp->bps == 16) { *s /= 256.0; } } } } return 0; } typedef struct { double sumIQx; double sumIQy; float avgIQx; float avgIQy; float complex avgIQ; ui32_t cnt; ui32_t maxcnt; ui32_t maxlim; } iq_dc_t; static iq_dc_t IQdc; static int f32read_csample(dsp_t *dsp, float complex *z) { float x, y; if (dsp->bps == 32) { //float32 float f[2]; if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = f[0]; y = f[1]; } else if (dsp->bps == 16) { //int16 short b[2]; if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = b[0]/32768.0; y = b[1]/32768.0; } else { // dsp->bps == 8 //uint8 ui8_t u[2]; if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = (u[0]-128)/128.0; y = (u[1]-128)/128.0; } *z = x + I*y; // IQ-dc removal optional if (dsp->opt_iqdc) { *z -= IQdc.avgIQ; IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } } return 0; } static int f32read_cblock(dsp_t *dsp) { int n; int len; float x, y; ui8_t s[4*2*dsp->decM]; //uin8,int16,float32 ui8_t *u = (ui8_t*)s; short *b = (short*)s; float *f = (float*)s; len = fread( s, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2; //for (n = 0; n < len; n++) dsp->decMbuf[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0; // u8: 0..255, 128 -> 0V for (n = 0; n < len; n++) { if (dsp->bps == 8) { //uint8 x = (u[2*n ]-128)/128.0; y = (u[2*n+1]-128)/128.0; } else if (dsp->bps == 16) { //int16 x = b[2*n ]/32768.0; y = b[2*n+1]/32768.0; } else { // dsp->bps == 32 //float32 x = f[2*n]; y = f[2*n+1]; } // baseband: IQ-dc removal mandatory dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } } return len; } // decimate lowpass static float *ws_dec; static double sinc(double x) { double y; if (x == 0) y = 1; else y = sin(M_PI*x)/(M_PI*x); return y; } static int lowpass_init(float f, int taps, float **pws) { double *h, *w; double norm = 0; int n; float *ws = NULL; if (taps % 2 == 0) taps++; // odd/symmetric if ( taps < 1 ) taps = 1; h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1; w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1; ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1; for (n = 0; n < taps; n++) { w[n] = 7938/18608.0 - 9240/18608.0*cos(_2PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann h[n] = 2*f*sinc(2*f*(n-(taps-1)/2)); ws[n] = w[n]*h[n]; norm += ws[n]; // 1-norm } for (n = 0; n < taps; n++) { ws[n] /= norm; // 1-norm } for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap *pws = ws; free(h); h = NULL; free(w); w = NULL; return taps; } static float complex lowpass1a(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { double complex w = 0; ui32_t n; ui32_t S = taps-1 + (sample % taps); for (n = 0; n < taps; n++) { w += buffer[n]*ws[S-n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps] } return (float complex)w; // symmetry: ws[n] == ws[taps-1-n] } //static __attribute__((optimize("-ffast-math"))) float complex lowpass() static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { float complex w = 0; int n; // -Ofast int S = taps - (sample % taps); for (n = 0; n < taps; n++) { w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps] } return w; // symmetry: ws[n] == ws[taps-1-n] } static float complex lowpass2(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { float complex w = 0; // -Ofast int n; int s = sample % taps; // lpIQ int S1 = s; int S1N = S1-taps; int n0 = taps-s; for (n = 0; n < n0; n++) { w += buffer[S1+n]*ws[n]; } for (n = n0; n < taps; n++) { w += buffer[S1N+n]*ws[n]; } return w; // symmetry: ws[n] == ws[taps-1-n] } static float re_lowpass(float buffer[], ui32_t sample, ui32_t taps, float *ws) { float w = 0; int n; int S = taps - (sample % taps); for (n = 0; n < taps; n++) { w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps] } return w; } static int f32_sample(dsp_t *dsp, float *out) { float s = 0.0; float s_fm = s; float complex z, w, z0; double gain = FM_GAIN; ui32_t decFM = 1; ui32_t _sample = dsp->sample_in; int m = 0; if (dsp->opt_fmdec) { decFM = dsp->decFM; _sample = dsp->sample_in * decFM; } for (m = 0; m < decFM; m++) { double t = _sample / (double)dsp->sr; if (dsp->opt_iq) { if (dsp->opt_iq >= 5) { ui32_t s_reset = dsp->dectaps*dsp->lut_len; int j; if ( f32read_cblock(dsp) < dsp->decM ) return EOF; for (j = 0; j < dsp->decM; j++) { if (dsp->opt_nolut) { double _s_base = (double)(_sample*dsp->decM+j); // dsp->sample_dec double f0 = dsp->xlt_fq*_s_base - dsp->Df*_s_base/(double)dsp->sr_base; z = dsp->decMbuf[j] * cexp(f0*_2PI*I); } else { z = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM]; } dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0; dsp->decXbuffer[dsp->sample_decX] = z; dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0; } if (dsp->decM > 1) { z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec); } } else if ( f32read_csample(dsp, &z) == EOF ) return EOF; if (dsp->opt_dc && !dsp->opt_nolut) { z *= cexp(-t*_2PI*dsp->Df*I); } // IF-lowpass if (dsp->opt_lp & LP_IQ) { dsp->lpIQ_buf[_sample % dsp->lpIQtaps] = z; z = lowpass(dsp->lpIQ_buf, _sample+1, dsp->lpIQtaps, dsp->ws_lpIQ); } z0 = dsp->iqbuf[(_sample-1) & 1]; // z0 = dsp->rot_iqbuf[(_sample-1 + dsp->N_IQBUF) % dsp->N_IQBUF]; w = z * conj(z0); s_fm = gain * carg(w)/M_PI; dsp->iqbuf[_sample & 1] = z; // dsp->rot_iqbuf[_sample % dsp->N_IQBUF] = z; s = s_fm; //opt_iq=1,6 } else { if (f32read_sample(dsp, &s) == EOF) return EOF; s_fm = s; //opt_iq==0 } // FM-lowpass if (dsp->opt_lp & LP_FM) { dsp->lpFM_buf[_sample % dsp->lpFMtaps] = s_fm; if (m+1 == decFM) { s_fm = re_lowpass(dsp->lpFM_buf, _sample+1, dsp->lpFMtaps, dsp->ws_lpFM); if (dsp->opt_iq < 2 || dsp->opt_iq > 5) s = s_fm; //opt_iq==0,1,6 } } _sample += 1; } if (dsp->opt_dc && !dsp->opt_iq) { s -= dsp->dc*0.4; } dsp->bufs[dsp->sample_in % dsp->M] = s; if (dsp->opt_dc) { float xneu, xalt; xneu = dsp->bufs[ dsp->sample_in % dsp->M]; xalt = dsp->bufs[(dsp->sample_in+1) % dsp->M]; dsp->xsum += xneu - xalt; if ((dsp->sample_in+dsp->pre_pos) % dsp->sr == 0) { double dc = dsp->xsum / (double)dsp->M; dsp->dc = dc; dsp->dDf = dsp->sr * dsp->dc / (2.0*FM_GAIN); // remaining freq offset dsp->Df += dsp->dDf*0.5; if (dsp->opt_iq) { if (fabs(dsp->dDf) > 2e3) { if (dsp->locked) { dsp->locked = 0; dsp->ws_lpIQ = dsp->ws_lpIQ0; } } else { if (dsp->locked == 0) { dsp->locked = 1; dsp->ws_lpIQ = dsp->ws_lpIQ1; } } } //DBG: if (dsp->opt_iq) fprintf(stderr, "Df: %+.3f\n", dsp->Df); } } dsp->sample_in += 1; *out = s; return 0; } /* -------------------------------------------------------------------------- */ #define IF_SAMPLE_RATE 48000 #define IF_SAMPLE_RATE_MIN 32000 #define IF_TRANSITION_BW (4e3) // (min) transition width #define FM_TRANSITION_BW (2e3) // (min) transition width static int init_buffers(dsp_t *dsp) { int i, pos; float b0, b1, b2, b; double t; int n, k; // decimate if (dsp->opt_iq >= 5) { int IF_sr = IF_SAMPLE_RATE; // designated IF sample rate int decM = 1; // decimate M:1 int sr_base = dsp->sr; float f_lp; // dec_lowpass: lowpass_bandwidth/2 float t_bw; // dec_lowpass: transition_bandwidth int taps; // dec_lowpass: taps if (dsp->opt_IFmin) IF_sr = IF_SAMPLE_RATE_MIN; if (dsp->opt_imet1) IF_sr *= 2; if (IF_sr > sr_base) IF_sr = sr_base; if (IF_sr < sr_base) { while (sr_base % IF_sr) IF_sr += 1; decM = sr_base / IF_sr; } f_lp = (IF_sr+20e3)/(4.0*sr_base); t_bw = (IF_sr-20e3)/*/2.0*/; if (dsp->opt_imet1) { f_lp = (IF_sr+80e3)/(4.0*sr_base); t_bw = (IF_sr-80e3)/*/2.0*/; } if (dsp->opt_IFmin) { t_bw = (IF_sr-12e3); if (dsp->opt_imet1) { f_lp = (IF_sr+60e3)/(4.0*sr_base); t_bw = (IF_sr-60e3)/2/*2.0*/; } } if (t_bw < 0) t_bw = 10e3; t_bw /= sr_base; taps = 4.0/t_bw; if (taps%2==0) taps++; taps = lowpass_init(f_lp, taps, &ws_dec); // decimate lowpass if (taps < 0) return -1; dsp->dectaps = (ui32_t)taps; dsp->sr_base = sr_base; dsp->sr = IF_sr; // sr_base/decM dsp->sps /= (float)decM; dsp->decM = decM; fprintf(stderr, "IF: %d\n", IF_sr); fprintf(stderr, "dec: %d\n", decM); } if (dsp->opt_iq >= 5) { if (!dsp->opt_nolut) { // look up table, exp-rotation int W = 2*8; // 16 Hz window int d = 1; // 1..W , groesster Teiler d <= W von sr_base int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5); int freq0 = freq; // init double f0 = freq0 / (double)dsp->sr_base; // init for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr if (dsp->sr_base % d == 0) break; } if (d == 0) d = 1; // d >= 1 ? for (k = 0; k < W/2; k++) { if ((freq+k) % d == 0) { freq0 = freq + k; break; } if ((freq-k) % d == 0) { freq0 = freq - k; break; } } dsp->lut_len = dsp->sr_base / d; f0 = freq0 / (double)dsp->sr_base; dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex)); if (dsp->ex == NULL) return -1; for (n = 0; n < dsp->lut_len; n++) { t = f0*(double)n; dsp->ex[n] = cexp(t*_2PI*I); } } dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex)); if (dsp->decXbuffer == NULL) return -1; dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex)); if (dsp->decMbuf == NULL) return -1; } // IF lowpass if (dsp->opt_iq && (dsp->opt_lp & LP_IQ)) { float f_lp; // lowpass_bw int taps; // lowpass taps: 4*sr/transition_bw f_lp = 24e3/(float)dsp->sr/2.0; // default if (dsp->lpIQ_bw) f_lp = dsp->lpIQ_bw/(float)dsp->sr/2.0; taps = 4*dsp->sr/IF_TRANSITION_BW; //if (dsp->sr > 80e3) taps = taps/2; if (taps%2==0) taps++; taps = lowpass_init(1.5*f_lp, taps, &dsp->ws_lpIQ0); if (taps < 0) return -1; taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQ1); if (taps < 0) return -1; dsp->lpIQ_fbw = f_lp; dsp->lpIQtaps = taps; dsp->lpIQ_buf = calloc( dsp->lpIQtaps+3, sizeof(float complex)); if (dsp->lpIQ_buf == NULL) return -1; dsp->ws_lpIQ = dsp->ws_lpIQ1; // dc-offset: if not centered, (acquisition) filter bw = lpIQ_bw + 4kHz // coarse acquisition: if (dsp->opt_dc) { dsp->locked = 0; dsp->ws_lpIQ = dsp->ws_lpIQ0; } } // FM lowpass if (dsp->opt_lp & LP_FM) { float f_lp; // lowpass_bw int taps; // lowpass taps: 4*sr/transition_bw f_lp = 10e3/(float)dsp->sr; // default if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr; taps = 4*dsp->sr/FM_TRANSITION_BW; if (taps%2==0) taps++; if (dsp->decFM > 1) { f_lp *= 2; //if (dsp->opt_iq >= 2 && dsp->opt_iq < 6) f_lp *= 2; taps = taps/2; } if (dsp->sr > 100e3) taps = taps/2; if (taps%2==0) taps++; taps = lowpass_init(f_lp, taps, &dsp->ws_lpFM); if (taps < 0) return -1; dsp->lpFMtaps = taps; dsp->lpFM_buf = calloc( dsp->lpFMtaps+3, sizeof(float)); // re_lowpass: size(float) (complex)lowpass: sizeof(float complex) if (dsp->lpFM_buf == NULL) return -1; } memset(&IQdc, 0, sizeof(IQdc)); IQdc.maxlim = dsp->sr; IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1 if (dsp->decM > 1) { IQdc.maxlim *= dsp->decM; IQdc.maxcnt *= dsp->decM; } dsp->sample_in = 0; dsp->M = dsp->sps*32; // a) dec buffer , b) len average/dc dsp->bufs = (float *)calloc( dsp->M+1, sizeof(float)); if (dsp->bufs == NULL) return -100; if (dsp->opt_iq) { if (dsp->nch < 2) return -1; } return 0; } static int free_buffers(dsp_t *dsp) { if (dsp->bufs) { free(dsp->bufs); dsp->bufs = NULL; } // decimate if (dsp->opt_iq >= 5) { if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; } if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; } if (!dsp->opt_nolut) { if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; } } if (ws_dec) { free(ws_dec); ws_dec = NULL; } } // IF lowpass if (dsp->opt_iq && (dsp->opt_lp & LP_IQ)) { if (dsp->ws_lpIQ0) { free(dsp->ws_lpIQ0); dsp->ws_lpIQ0 = NULL; } if (dsp->ws_lpIQ1) { free(dsp->ws_lpIQ1); dsp->ws_lpIQ1 = NULL; } if (dsp->lpIQ_buf) { free(dsp->lpIQ_buf); dsp->lpIQ_buf = NULL; } } // FM lowpass if (dsp->opt_lp & LP_FM) { if (dsp->ws_lpFM) { free(dsp->ws_lpFM); dsp->ws_lpFM = NULL; } if (dsp->lpFM_buf) { free(dsp->lpFM_buf); dsp->lpFM_buf = NULL; } } return 0; } /* ------------------------------------------------------------------------------------ */ // Bell202, 1200 baud (1200Hz/2200Hz), 8N1 #define BAUD_RATE 1200 #define BITS (10) #define LEN_BITFRAME BAUD_RATE #define LEN_BYTEFRAME (LEN_BITFRAME/BITS) #define HEADLEN 30 typedef struct { // GPS int hour; int min; int sec; float lat; float lon; int alt; int sats; float vH; float vD; float vV; // eGPS // PTU int frame; float temp; float pressure; float humidity; float batt; // XDATA char xdata[2*LEN_BYTEFRAME+1]; // xdata hex string: aux_str1#aux_str2... char *paux; // int gps_valid; int ptu_valid; // int jsn_freq; // freq/kHz (SDR) } gpx_t; gpx_t gpx; char header[] = "1111111111111111111""10""10000000""1"; char buf[HEADLEN+1] = "x"; int bufpos = -1; int bitpos; ui8_t bitframe[LEN_BITFRAME+1] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}; ui8_t byteframe[LEN_BYTEFRAME+1]; int N, ptr; float *buffer = NULL; /* ------------------------------------------------------------------------------------ */ void inc_bufpos() { bufpos = (bufpos+1) % HEADLEN; } int compare() { int i=0, j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != header[HEADLEN-1-i]) break; j--; i++; } return i; } int bits2byte(ui8_t *bits) { int i, d = 1, byte = 0; if ( bits[0]+bits[1]+bits[2]+bits[3]+bits[4] // 1 11111111 1 (sync) +bits[5]+bits[6]+bits[7]+bits[8]+bits[9] == 10 ) return 0xFFFF; for (i = 1; i < BITS-1; i++) { // little endian if (bits[i] == 1) byte += d; else if (bits[i] == 0) byte += 0; d <<= 1; } return byte & 0xFF; } int bits2bytes(ui8_t *bits, ui8_t *bytes, int len) { int i; int byte; for (i = 0; i < len; i++) { byte = bits2byte(bits+BITS*i); bytes[i] = byte & 0xFF; if (byte == 0xFFFF) break; } return i; } void print_rawbits(int len) { int i; for (i = 0; i < len; i++) { if ((i % BITS == 1) || (i % BITS == BITS-1)) fprintf(stdout, " "); fprintf(stdout, "%d", bitframe[i]); } fprintf(stdout, "\n"); } int hexval(char nib) { int i; int h = 0; if (nib >= '0' && nib <= '9') h = nib-'0'; else if (nib >= 'a' && nib <= 'f') h = nib-'a'+0xA; else if (nib >= 'A' && nib <= 'F') h = nib-'A'+0xA; else return -1; return (h & 0xF); } /* -------------------------------------------------------------------------- */ int crc16poly = 0x1021; // CRC16-CCITT int crc16(ui8_t bytes[], int len) { int rem = 0x1D0F; // initial value int i, j; for (i = 0; i < len; i++) { rem = rem ^ (bytes[i] << 8); for (j = 0; j < 8; j++) { if (rem & 0x8000) { rem = (rem << 1) ^ crc16poly; } else { rem = (rem << 1); } rem &= 0xFFFF; } } return rem; } /* -------------------------------------------------------------------------- */ #define LEN_GPSePTU (18+20) /* standard frame: 01 02 (GPS) .. .. 01 04 (ePTU) .. .. */ #define SOH_01 0x01 #define PKT_PTU 0x01 #define PKT_GPS 0x02 #define PKT_XDATA 0x03 #define PKT_ePTU 0x04 #define PKT_eGPS 0x05 /* PTU (enhanced) Data Packet (LSB) offset bytes description 0 1 SOH = 0x01 1 1 PKT_ID = 0x01/0x04 2 2 PKT = packet number 4 3 P, mbs (P = n/100) 7 2 T, °C (T = n/100) 9 2 U, % (U = n/100) 11 1 Vbat, V (V = n/10) 12 2 Tint, °C (Tint = n/100) 14 2 Tpr, °C (Tpr = n/100) 16 2 Tu, °C (Tu = n/100) 12/18 2 CRC (16-bit) packet size = 14/20 bytes */ #define pos_PCKnum 0x02 // 2 byte #define pos_PTUprs 0x04 // 3 byte #define pos_PTUtem 0x07 // 2 byte int #define pos_PTUhum 0x09 // 2 byte #define pos_PTUbat 0x0B // 1 byte #define pos_PTUcrc 0x0C // 2 byte #define pos_ePTUtint 0x0C // 2 byte #define pos_ePTUtpr 0x0E // 2 byte #define pos_ePTUtu 0x10 // 2 byte #define pos_ePTUcrc 0x12 // 2 byte int print_ePTU(int pos, ui8_t PKT_ID) { int P, U; short T; int bat, pcknum; int crc_val, crc; // 0x04: ePTU 0x01: PTU int posPTUCRC = (PKT_ID == PKT_ePTU) ? pos_ePTUcrc : pos_PTUcrc; if (PKT_ID != PKT_ePTU && PKT_ID != PKT_PTU) return -1; crc_val = ((byteframe+pos)[posPTUCRC] << 8) | (byteframe+pos)[posPTUCRC+1]; crc = crc16(byteframe+pos, posPTUCRC); // len=pos P = (byteframe+pos)[pos_PTUprs] | ((byteframe+pos)[pos_PTUprs+1]<<8) | ((byteframe+pos)[pos_PTUprs+2]<<16); T = (byteframe+pos)[pos_PTUtem] | ((byteframe+pos)[pos_PTUtem+1]<<8); U = (byteframe+pos)[pos_PTUhum] | ((byteframe+pos)[pos_PTUhum+1]<<8); bat = (byteframe+pos)[pos_PTUbat]; pcknum = (byteframe+pos)[pos_PCKnum] | ((byteframe+pos)[pos_PCKnum+1]<<8); fprintf(stdout, "[%d] ", pcknum); fprintf(stdout, " P:%.2fmb ", P/100.0); fprintf(stdout, " T:%.2f°C ", T/100.0); fprintf(stdout, " U:%.2f%% ", U/100.0); fprintf(stdout, " bat:%.1fV ", bat/10.0); fprintf(stdout, " # "); fprintf(stdout, " CRC: %04X ", crc_val); fprintf(stdout, "- %04X ", crc); if (crc_val == crc) { fprintf(stdout, "[OK]"); gpx.ptu_valid = PKT_ID; gpx.frame = pcknum; gpx.pressure = P/100.0; gpx.temp = T/100.0; gpx.humidity = U/100.0; gpx.batt = bat/10.0; } else { fprintf(stdout, "[NO]"); gpx.ptu_valid = 0; } fprintf(stdout, "\n"); return (crc_val != crc); } /* GPS (enhanced) Data Packet (LSB) offset bytes description 0 1 SOH = 0x01 1 1 PKT_ID = 0x02/0x05 2 4 Latitude, +/- deg (float) 6 4 Longitude, +/- deg (float) 10 2 Altitude, meters (Alt = n-5000) 12 1 nSat (0 - 12) 13 4 velE m/s (float) 17 4 velN m/s (float) 21 4 velU m/s (float) 13/25 3 Time (hr,min,sec) 16/28 2 CRC (16-bit) packet size = 18/30 bytes */ #define pos_GPSlat 0x02 // 4 byte float #define pos_GPSlon 0x06 // 4 byte float #define pos_GPSalt 0x0A // 2 byte int #define pos_GPSsats 0x0C // 1 byte #define pos_GPStim 0x0D // 3 byte #define pos_GPScrc 0x10 // 2 byte #define pos_eGPSvE 0x0D // 4 byte float #define pos_eGPSvN 0x11 // 4 byte float #define pos_eGPSvU 0x15 // 4 byte float #define pos_eGPStim 0x19 // 3 byte #define pos_eGPScrc 0x1C // 2 byte int print_eGPS(int pos, ui8_t PKT_ID) { float lat, lon; float vE, vN, vU, vH, vD; // E,N,U, speed, dir/heading int alt, sats; int std, min, sek; int crc_val, crc; // 0x02: GPS 0x05: eGPS int posGPStim = (PKT_ID == PKT_GPS) ? pos_GPStim : pos_eGPStim; int posGPSCRC = (PKT_ID == PKT_GPS) ? pos_GPScrc : pos_eGPScrc; if (PKT_ID != PKT_GPS && PKT_ID != PKT_eGPS) return -1; crc_val = ((byteframe+pos)[pos_GPScrc] << 8) | (byteframe+pos)[pos_GPScrc+1]; crc = crc16(byteframe+pos, pos_GPScrc); // len=pos //lat = *(float*)(byteframe+pos+pos_GPSlat); //lon = *(float*)(byteframe+pos+pos_GPSlon); // //raspi: copy into (aligned) float memcpy(&lat, byteframe+pos+pos_GPSlat, 4); memcpy(&lon, byteframe+pos+pos_GPSlon, 4); alt = ((byteframe+pos)[pos_GPSalt+1]<<8)+(byteframe+pos)[pos_GPSalt] - 5000; sats = (byteframe+pos)[pos_GPSsats]; std = (byteframe+pos)[posGPStim+0]; min = (byteframe+pos)[posGPStim+1]; sek = (byteframe+pos)[posGPStim+2]; if (std < 25 && min < 61 && sek < 100) { fprintf(stdout, "(%02d:%02d:%02d) ", std, min, sek); } if (lat > -91.0f && lat < 91.0f && lon > -181.0f && lon < 181.0f) { fprintf(stdout, " lat: %.6f° ", lat); fprintf(stdout, " lon: %.6f° ", lon); if (alt > -1000 && alt < 80000) { fprintf(stdout, " alt: %dm ", alt); } fprintf(stdout, " sats: %d ", sats); } gpx.vH = gpx.vD = gpx.vV = 0; if (PKT_ID == PKT_eGPS) { memcpy(&vE, byteframe+pos+pos_eGPSvE, 4); memcpy(&vN, byteframe+pos+pos_eGPSvN, 4); memcpy(&vU, byteframe+pos+pos_eGPSvU, 4); vH = sqrt(vE*vE+vN*vN); vD = atan2(vE, vN) * 180.0 / M_PI; if (vD < 0) vD += 360.0; // TODO: TEST eGPS/vel if (vH < 1000.0f && vU > -1000.0f && vU < 1000.0f) { fprintf(stdout, " vH: %.1fm/s D: %.1f° vV: %.1fm/s ", vH, vD, vU); } } fprintf(stdout, " # "); fprintf(stdout, " CRC: %04X ", crc_val); fprintf(stdout, "- %04X ", crc); if (crc_val == crc) { fprintf(stdout, "[OK]"); gpx.gps_valid = PKT_ID; gpx.lat = lat; gpx.lon = lon; gpx.alt = alt; gpx.sats = sats; gpx.hour = std; gpx.min = min; gpx.sec = sek; if (PKT_ID == PKT_eGPS) { gpx.vH = vH; gpx.vD = vD; gpx.vV = vU; } } else { fprintf(stdout, "[NO]"); gpx.gps_valid = 0; } fprintf(stdout, "\n"); return (crc_val != crc); } /* Extra Data Packet - XDATA offset bytes description 0 1 SOH = 0x01 1 1 PKT_ID = 0x03 2 2 N = number of data bytes to follow 3+N 2 CRC (16-bit) N=8, ID=0x01: ECC Ozonesonde (MSB) 3 1 Instrument_type = 0x01 (ID) 4 1 Instrument_number 5 2 Icell, uA (I = n/1000) 7 2 Tpump, °C (T = n/100) 9 1 Ipump, mA 10 1 Vbat, (V = n/10) 11 2 CRC (16-bit) packet size = 12 bytes // ID=0x05: OIF411 ID=0x08: CFH (Cryogenic Frost-Point Hygrometer) ID=0x19: COBALD (Compact Optical Backscatter Aerosol Detector) */ int print_xdata(int pos, ui8_t N) { ui8_t InstrumentNum; short Tpump; unsigned short Icell, Ipump, Vbat; int crc_val, crc; int crc_len = 3+N; crc_val = ((byteframe+pos)[crc_len] << 8) | (byteframe+pos)[crc_len+1]; crc = crc16(byteframe+pos, crc_len); // len=pos fprintf(stdout, " XDATA "); // (byteframe+pos)[2] = N if (N == 8 && (byteframe+pos)[3] == 0x01) { // Ozonesonde 01 03 08 01 .. .. (MSB) InstrumentNum = (byteframe+pos)[4]; Icell = (byteframe+pos)[5+1] | ((byteframe+pos)[5]<<8); // MSB Tpump = (byteframe+pos)[7+1] | ((byteframe+pos)[7]<<8); // MSB Ipump = (byteframe+pos)[9]; Vbat = (byteframe+pos)[10]; fprintf(stdout, " Icell:%.3fuA ", Icell/1000.0); fprintf(stdout, " Tpump:%.2f°C ", Tpump/100.0); fprintf(stdout, " Ipump:%dmA ", Ipump); fprintf(stdout, " Vbat:%.1fV ", Vbat/10.0); } else { int j; fprintf(stdout, " (N=0x%02X)", N); for (j = 0; j < N; j++) fprintf(stdout, " %02X", (byteframe+pos)[3+j]); } if (crc_val == crc && (gpx.paux-gpx.xdata)+2*(N+1) < 2*LEN_BYTEFRAME) { // hex(xdata[2:3+N]) , strip [0103NN]..[CRC16] , '#'-separated int j; if (gpx.paux > gpx.xdata) { *(gpx.paux) = '#'; gpx.paux += 1; } //exclude length (byteframe+pos)[2]=N (sprintf(gpx.paux, "%02X", (byteframe+pos)[2]); gpx.paux += 2;) for (j = 0; j < N; j++) { sprintf(gpx.paux, "%02X", (byteframe+pos)[3+j]); gpx.paux += 2; } *(gpx.paux) = '\0'; } fprintf(stdout, " # "); fprintf(stdout, " CRC: %04X ", crc_val); fprintf(stdout, "- %04X ", crc); if (crc_val == crc) { fprintf(stdout, "[OK]"); } else { fprintf(stdout, "[NO]"); } fprintf(stdout, "\n"); return (crc_val != crc); } /* -------------------------------------------------------------------------- */ int print_frame(int len, int bits2byte) { int i; int framelen; int crc_err1 = 0, crc_err2 = 0, crc_err3 = 0; int ofs = 0; int out = 0; gpx.gps_valid = 0; gpx.ptu_valid = 0; if ( len < 2 || len > LEN_BYTEFRAME ) return -1; if (bits2byte) { memset(byteframe, 0, LEN_BYTEFRAME); framelen = bits2bytes(bitframe, byteframe, len); } else { framelen = len; } if (option_rawbits && !rawhex) { print_rawbits(framelen*BITS); } else { if (option_raw) { for (i = 0; i < framelen; i++) { // LEN_GPSePTU fprintf(stdout, "%02X ", byteframe[i]); } fprintf(stdout, "\n"); out |= 8; } //else { ofs = 0; gpx.xdata[0] = '\0'; gpx.paux = gpx.xdata; while (ofs < framelen && byteframe[ofs] == SOH_01) // SOH = 0x01 { ui8_t PKT_ID = byteframe[ofs+1]; if (PKT_ID == PKT_GPS || PKT_ID == PKT_eGPS) // GPS/eGPS Data Packet { int posGPSCRC = (PKT_ID == PKT_GPS) ? pos_GPScrc : pos_eGPScrc; crc_err1 = print_eGPS(ofs, PKT_ID); // packet offset in byteframe ofs += posGPSCRC+2; out |= 1; } else if (PKT_ID == PKT_ePTU || PKT_ID == PKT_PTU) // ePTU/PTU Data Packet { int posPTUCRC = (PKT_ID == PKT_ePTU) ? pos_ePTUcrc : pos_PTUcrc; crc_err2 = print_ePTU(ofs, PKT_ID); // packet offset in byteframe ofs += posPTUCRC+2; out |= 2; } else if (PKT_ID == PKT_XDATA) // Extra Data Packet { ui8_t N = byteframe[ofs+2]; if (N > 0 && ofs+2+N+2 < framelen) { crc_err3 = print_xdata(ofs, N); // packet offset in byteframe ofs += N+3+2; out |= 4; } else { break; } } else { break; } } // if (crc_err1==0 && crc_err2==0) { } if (option_json) { if (gpx.gps_valid && gpx.ptu_valid) // frameNb part of PTU-pck { char *ver_jsn = NULL; fprintf(stdout, "{ \"type\": \"%s\"", "IMET"); fprintf(stdout, ", \"frame\": %d, \"id\": \"iMet\", \"datetime\": \"%02d:%02d:%02dZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %d, \"sats\": %d, \"temp\": %.2f, \"humidity\": %.2f, \"pressure\": %.2f, \"batt\": %.1f", gpx.frame, gpx.hour, gpx.min, gpx.sec, gpx.lat, gpx.lon, gpx.alt, gpx.sats, gpx.temp, gpx.humidity, gpx.pressure, gpx.batt); // TODO: TEST eGPS/vel if (0 && gpx.gps_valid == PKT_eGPS) { fprintf(stdout, ", \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f", gpx.vH, gpx.vD, gpx.vV ); } if (gpx.xdata[0]) { fprintf(stdout, ", \"aux\": \"%s\"", gpx.xdata ); } if (gpx.jsn_freq > 0) { fprintf(stdout, ", \"freq\": %d", gpx.jsn_freq ); } // Reference time/position fprintf(stdout, ", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec fprintf(stdout, ", \"ref_position\": \"%s\"", "MSL" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid #ifdef VER_JSN_STR ver_jsn = VER_JSN_STR; #endif if (ver_jsn && *ver_jsn != '\0') fprintf(stdout, ", \"version\": \"%s\"", ver_jsn); fprintf(stdout, " }\n"); } } if (out) fprintf(stdout, "\n"); fflush(stdout); } } return 0; } /* -------------------------------------------------------------------------- */ double complex F1sum = 0; double complex F2sum = 0; int main(int argc, char *argv[]) { FILE *fp; char *fpname; unsigned int sample_count; int i; int bit = 8, bit0 = 8; int pos = 0, pos0 = 0; double pos_bit = 0; int header_found = 0; double bitlen; // sample_rate/BAUD_RATE int len; double f1, f2; double complex iw1, iw2; int n; double t = 0.0; double tn = 0.0; double x = 0.0; double x0 = 0.0; double complex X0 = 0; double complex X = 0; double xbit = 0.0; float s = 0.0; int bitbuf[3]; float lpIQ_bw = 16e3; int option_iq = 0; int option_lp = 0; int option_dc = 0; int option_decFM = 0; int option_noLUT = 0; int option_iqdc = 0; int option_pcmraw = 0; int option_min = 0; int wavloaded = 0; int sel_wavch = 0; int k; int cfreq = -1; pcm_t pcm = {0}; dsp_t dsp = {0}; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " -r, --raw\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "--rawbits") == 0) ) { option_rawbits = 1; } else if ( (strcmp(*argv, "-b") == 0) ) { option_b = 1; } else if ( (strcmp(*argv, "--iq") == 0) ) { // fq baseband -> IF (rotate from and decimate) double fq = 0.0; // --iq , -0.5 < fq < 0.5 ++argv; if (*argv) fq = atof(*argv); else return -1; if (fq < -0.5) fq = -0.5; if (fq > 0.5) fq = 0.5; dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t) option_iq = 6; } else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ lowpass else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz double bw = 0.0; ++argv; if (*argv) bw = atof(*argv); else return -1; if (bw > 4.0 && bw < 256.0) lpIQ_bw = bw*1e3; option_lp |= LP_IQ; } else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass else if (strcmp(*argv, "--decFM") == 0) { // FM decimation option_decFM = 2; } else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; } else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; } else if (strcmp(*argv, "--min") == 0) { option_min = 1; } else if (strcmp(*argv, "--imet1") == 0) { dsp.opt_imet1 = 1; } // iMet-1-RS bw=64k else if ( (strcmp(*argv, "--json") == 0) ) { option_json = 1; } else if ( (strcmp(*argv, "--jsn_cfq") == 0) ) { int frq = -1; // center frequency / Hz ++argv; if (*argv) frq = atoi(*argv); else return -1; if (frq < 300000000) frq = -1; cfreq = frq; } else if (strcmp(*argv, "--rawhex") == 0) { rawhex = 1; } // raw hex input else if (strcmp(*argv, "-") == 0) { int sample_rate = 0, bits_sample = 0, channels = 0; ++argv; if (*argv) sample_rate = atoi(*argv); else return -1; ++argv; if (*argv) bits_sample = atoi(*argv); else return -1; channels = 2; if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) { fprintf(stderr, "- \n"); return -1; } pcm.sr = sample_rate; pcm.bps = bits_sample; pcm.nch = channels; option_pcmraw = 1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; if (!rawhex) { if (option_iq == 0 && option_pcmraw) { fclose(fp); fprintf(stderr, "error: raw data not IQ\n"); return -1; } if (option_iq) sel_wavch = 0; pcm.sel_ch = sel_wavch; if (option_pcmraw == 0) { k = read_wav_header(&pcm, fp); if ( k < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } } gpx.jsn_freq = 0; if (cfreq > 0) { int fq_kHz = (cfreq - dsp.xlt_fq*pcm.sr + 500)/1e3; gpx.jsn_freq = fq_kHz; } // init dsp // dsp.fp = fp; dsp.sr = pcm.sr; dsp.bps = pcm.bps; dsp.nch = pcm.nch; dsp.ch = pcm.sel_ch; dsp.br = (float)BAUD_RATE; if (option_decFM) { if (option_iq == 5) option_lp |= LP_IQFM; else option_lp |= LP_FM; if (dsp.sr > 60000) dsp.opt_fmdec = 1; } dsp.sps = (float)dsp.sr/dsp.br; dsp.decFM = 1; if (dsp.opt_fmdec) { dsp.decFM = option_decFM; while (dsp.sr % dsp.decFM > 0 && dsp.decFM > 1) dsp.decFM /= 2; dsp.sps /= (float)dsp.decFM; } if (dsp.opt_imet1) { if (lpIQ_bw < 60e3) lpIQ_bw = 80e3; } dsp.opt_iq = option_iq; dsp.opt_iqdc = option_iqdc; dsp.opt_lp = option_lp; dsp.lpIQ_bw = lpIQ_bw; // IF lowpass bandwidth dsp.lpFM_bw = 6e3; // FM audio lowpass if (option_iq == 6) dsp.lpFM_bw = 6e3; else if (option_iq == 5) dsp.lpFM_bw = 6e3; dsp.opt_dc = option_dc; dsp.opt_IFmin = option_min; // LUT faster, however frequency correction after decimation // LUT recommonded if decM > 2 // if (option_noLUT && option_iq >= 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0; init_buffers(&dsp); // free dsp.sr_fm = dsp.sr/dsp.decFM; bitlen = dsp.sr_fm/(double)BAUD_RATE; f1 = 2200.0; // bit0: 2200Hz f2 = 1200.0; // bit1: 1200Hz iw1 = _2PI*I*f1; iw2 = _2PI*I*f2; N = 2*bitlen + 0.5; buffer = calloc( N+1, sizeof(float)); if (buffer == NULL) return -1; ptr = -1; sample_count = -1; while (f32_sample(&dsp, &s) != EOF) { ptr++; sample_count++; if (ptr == N) ptr = 0; buffer[ptr] = s; n = bitlen; t = sample_count / (double)dsp.sr_fm; tn = (sample_count-n) / (double)dsp.sr_fm; x = buffer[sample_count % N]; x0 = buffer[(sample_count - n + N) % N]; // f1 X0 = x0 * cexp(-tn*iw1); // alt X = x * cexp(-t *iw1); // neu F1sum += X - X0; // f2 X0 = x0 * cexp(-tn*iw2); // alt X = x * cexp(-t *iw2); // neu F2sum += X - X0; xbit = cabs(F2sum) - cabs(F1sum); s = xbit / bitlen; if ( s < 0 ) bit = 0; // 2200Hz else bit = 1; // 1200Hz bitbuf[sample_count % 3] = bit; if (header_found && option_b) { if (sample_count - pos_bit > bitlen+bitlen/5 + 3) { int bitsum = bitbuf[0]+bitbuf[1]+bitbuf[2]; if (bitsum > 1.5) bit = 1; else bit = 0; bitframe[bitpos] = bit; bitpos++; if (bitpos >= LEN_BITFRAME-200) { // LEN_GPSePTU*BITS+40 print_frame(bitpos/BITS, 1); bitpos = 0; header_found = 0; } pos_bit += bitlen; } } else { if (bit != bit0) { pos0 = pos; pos = sample_count; //sample_count-(N-1)/2 len = (pos-pos0)/bitlen + 0.5; for (i = 0; i < len; i++) { inc_bufpos(); buf[bufpos] = 0x30 + bit0; if (!header_found) { if (compare() >= HEADLEN) { header_found = 1; bitpos = 10; pos_bit = pos; if (option_b) { bitframe[bitpos] = bit; bitpos++; } dsp.mv_pos = dsp.sample_in; dsp.pre_pos = dsp.mv_pos - HEADLEN*dsp.sps; if (dsp.pre_pos > dsp.mv_pos) dsp.pre_pos = 0; } } else { bitframe[bitpos] = bit0; bitpos++; if (bitpos >= LEN_BITFRAME-200) { // LEN_GPSePTU*BITS+40 print_frame(bitpos/BITS, 1); bitpos = 0; header_found = 0; } } } bit0 = bit; } } } if (buffer) { free(buffer); buffer = NULL; } free_buffers(&dsp); } else { // rawhex char buffer_rawhex[3*(LEN_BYTEFRAME)+12]; char *pbuf = NULL; int hi, lo; int len, j, n; gpx.jsn_freq = 0; if (cfreq > 0) { gpx.jsn_freq = cfreq/1e3; } while (1 > 0) { memset(byteframe, 0, LEN_BYTEFRAME); memset(buffer_rawhex, 0, 3*(LEN_BYTEFRAME)+6); pbuf = fgets(buffer_rawhex, 3*(LEN_BYTEFRAME)+6, fp); if (pbuf == NULL) break; buffer_rawhex[3*(LEN_BYTEFRAME)] = '\0'; len = strlen(buffer_rawhex); while (len > 0 && buffer_rawhex[len-1] <= ' ') len--; buffer_rawhex[len] = '\0'; j = 0; n = 0; while (pbuf[j] && n < LEN_BYTEFRAME) { if (pbuf[j] == ' ') j++; // if/while hi = hexval(pbuf[j]); if (hi < 0) break; j++; lo = hexval(pbuf[j]); if (lo < 0) break; j++; byteframe[n] = (hi << 4) | lo; n++; } len = n; if (len > 10) { print_frame(len, 0); } } } fprintf(stdout, "\n"); fclose(fp); return 0; }