/* * dfm09 (dfm06) * sync header: correlation/matched filter * files: dfm09dm.c demod.h demod.c * compile: * gcc -c demod.c * gcc dfm09dm.c demod.o -lm -o dfm09dm * * author: zilog80 */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef unsigned int ui32_t; //#include "demod.c" #include "demod.h" typedef struct { int frnr; int sonde_typ; ui32_t SN6; ui32_t SN9; int week; int gpssec; int jahr; int monat; int tag; int std; int min; float sek; double lat; double lon; double alt; double dir; double horiV; double vertV; float meas24[5]; float status[2]; } gpx_t; gpx_t gpx; char dat_str[9][13+1]; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_inv = 0, // invertiert Signal option_ecc = 0, option_ptu = 0, option_ths = 0, wavloaded = 0; int start = 0; //#define HEADLEN 32 // DFM09: Manchester2: 01->1,10->0 char rawheader[] = "10011010100110010101101001010101"; //->"0100010111001111"; // 0x45CF (big endian) #define BITFRAME_LEN 280 char frame_bits[BITFRAME_LEN+4] = "0100010111001111"; /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 2500 /* ------------------------------------------------------------------------------------ */ #define B 8 // codeword: 8 bit #define S 4 // davon 4 bit data #define HEAD 0 // 16 bit #define CONF (16+0) // 56 bit #define DAT1 (16+56) // 104 bit #define DAT2 (16+160) // 104 bit // frame: 280 bit ui8_t H[4][8] = // Parity-Check {{ 0, 1, 1, 1, 1, 0, 0, 0}, { 1, 0, 1, 1, 0, 1, 0, 0}, { 1, 1, 0, 1, 0, 0, 1, 0}, { 1, 1, 1, 0, 0, 0, 0, 1}}; ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H: // 1-bit-error-Syndrome ui8_t hamming_conf[ 7*B]; // 7*8=56 ui8_t hamming_dat1[13*B]; // 13*8=104 ui8_t hamming_dat2[13*B]; ui8_t block_conf[ 7*S]; // 7*4=28 ui8_t block_dat1[13*S]; // 13*4=52 ui8_t block_dat2[13*S]; ui32_t bits2val(ui8_t *bits, int len) { // big endian int j; ui32_t val; if ((len < 0) || (len > 32)) return -1; // = 0xFFFF val = 0; for (j = 0; j < len; j++) { val |= (bits[j] << (len-1-j)); } return val; } void deinterleave(char *str, int L, ui8_t *block) { int i, j; for (j = 0; j < B; j++) { // L = 7, 13 for (i = 0; i < L; i++) { if (str[L*j+i] >= 0x30 && str[L*j+i] <= 0x31) { block[B*i+j] = str[L*j+i] - 0x30; // ASCII -> bit } } } } int check(ui8_t code[8]) { int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt, ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser, ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision. int ret=0; for (i = 0; i < 4; i++) { // S = 4 syndrom[i] = 0; for (j = 0; j < 8; j++) { // B = 8 syndrom[i] ^= H[i][j] & code[j]; } } synval = bits2val(syndrom, 4); if (synval) { ret = -1; for (j = 0; j < 8; j++) { // 1-bit-error if (synval == He[j]) { // reicht auf databits zu pruefen, d.h. ret = j+1; // (systematischer Code) He[0..3] break; } } } else ret = 0; if (ret > 0) code[ret-1] ^= 0x1; return ret; } int hamming(ui8_t *ham, int L, ui8_t *sym) { int i, j; int ret = 0; // L = 7, 13 for (i = 0; i < L; i++) { // L * 2 nibble (data+parity) if (option_ecc) ret |= check(ham+B*i); for (j = 0; j < S; j++) { // systematic: bits 0..S-1 data sym[S*i+j] = ham[B*i+j]; } } return ret; } char nib2chr(ui8_t nib) { char c = '_'; if (nib < 0x10) { if (nib < 0xA) c = 0x30 + nib; else c = 0x41 + nib-0xA; } return c; } int dat_out(ui8_t *dat_bits) { int i, ret = 0; static int fr_id; // int jahr = 0, monat = 0, tag = 0, std = 0, min = 0; int frnr = 0; int msek = 0; int lat = 0, lon = 0, alt = 0; int nib; int dvv; // signed/unsigned 16bit fr_id = bits2val(dat_bits+48, 4); if (fr_id >= 0 && fr_id <= 8) { for (i = 0; i < 13; i++) { nib = bits2val(dat_bits+4*i, 4); dat_str[fr_id][i] = nib2chr(nib); } dat_str[fr_id][13] = '\0'; } if (fr_id == 0) { start = 1; frnr = bits2val(dat_bits+24, 8); gpx.frnr = frnr; } if (fr_id == 1) { // 00..31: ? GPS-Sats in Sicht? msek = bits2val(dat_bits+32, 16); gpx.sek = msek/1000.0; } if (fr_id == 2) { lat = bits2val(dat_bits, 32); gpx.lat = lat/1e7; dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein gpx.horiV = dvv/1e2; } if (fr_id == 3) { lon = bits2val(dat_bits, 32); gpx.lon = lon/1e7; dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned gpx.dir = dvv/1e2; } if (fr_id == 4) { alt = bits2val(dat_bits, 32); gpx.alt = alt/1e2; dvv = (short)bits2val(dat_bits+32, 16); // signed gpx.vertV = dvv/1e2; } if (fr_id == 5) { } if (fr_id == 6) { } if (fr_id == 7) { } if (fr_id == 8) { gpx.jahr = bits2val(dat_bits, 12); gpx.monat = bits2val(dat_bits+12, 4); gpx.tag = bits2val(dat_bits+16, 5); gpx.std = bits2val(dat_bits+21, 5); gpx.min = bits2val(dat_bits+26, 6); } ret = fr_id; return ret; } // DFM-06 (NXP8) float fl20(int d) { // float20 int val, p; float f; p = (d>>16) & 0xF; val = d & 0xFFFF; f = val/(float)(1<> 16) & 0xF; f = m / pow(2,e); return f; } */ // DFM-09 (STM32) float fl24(int d) { // float24 int val, p; float f; p = (d>>20) & 0xF; val = d & 0xFFFFF; f = val/(float)(1< 0 ? float T = 0; // T/Kelvin if (meas[0]*meas[3]*meas[4] == 0) R = 0; if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0)); return T - 273.15; // Celsius // DFM-06: meas20 * 16 = meas24 // -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4] } float get_Temp2(float *meas) { // meas[0..4] // NTC-Thermistor EPCOS B57540G0502 // R/T No 8402, R25=Ro=5k // B0/100=3450 // 1/T = 1/To + 1/B log(r) , r=R/Ro // GRAW calibration data -80C..+40C on EEPROM ? // meas0 = g*(R+Rs)+ofs // meas3 = g*Rs+ofs , Rs: dfm6:10k, dfm9:20k // meas4 = g*Rf+ofs , Rf=220k float f = meas[0], f1 = meas[3], f2 = meas[4]; float B0 = 3260.0; // B/Kelvin, fit -55C..+40C float T0 = 25 + 273.15; // t0=25C float R0 = 5.0e3; // R0=R25=5k float Rf2 = 220e3; // Rf2 = Rf = 220k float g_o = f2/Rf2; // approx gain float Rs_o = f1/g_o; // = Rf2 * f1/f2; float Rf1 = Rs_o; // Rf1 = Rs: dfm6:10k, dfm9:20k float g = g_o; // gain float Rb = 0.0; // offset float R = 0; // thermistor float T = 0; // T/Kelvin if ( 8e3 < Rs_o && Rs_o < 12e3) Rf1 = 10e3; // dfm6 else if (18e3 < Rs_o && Rs_o < 22e3) Rf1 = 20e3; // dfm9 g = (f2 - f1) / (Rf2 - Rf1); Rb = (f1*Rf2-f2*Rf1)/(f2-f1); // ofs/g R = (f-f1)/g; // meas[0,3,4] > 0 ? if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0)); if (option_ptu && option_verbose == 2) { printf(" (Rso: %.1f , Rb: %.1f)", Rs_o/1e3, Rb/1e3); } return T - 273.15; // DFM-06: meas20 * 16 = meas24 } float get_Temp4(float *meas) { // meas[0..4] // NTC-Thermistor EPCOS B57540G0502 // [ T/C , R/R25 , alpha ] : // [ -55.0 , 51.991 , 6.4 ] // [ -50.0 , 37.989 , 6.2 ] // [ -45.0 , 28.07 , 5.9 ] // [ -40.0 , 20.96 , 5.7 ] // [ -35.0 , 15.809 , 5.5 ] // [ -30.0 , 12.037 , 5.4 ] // [ -25.0 , 9.2484 , 5.2 ] // [ -20.0 , 7.1668 , 5.0 ] // [ -15.0 , 5.5993 , 4.9 ] // [ -10.0 , 4.4087 , 4.7 ] // [ -5.0 , 3.4971 , 4.6 ] // [ 0.0 , 2.7936 , 4.4 ] // [ 5.0 , 2.2468 , 4.3 ] // [ 10.0 , 1.8187 , 4.2 ] // [ 15.0 , 1.4813 , 4.0 ] // [ 20.0 , 1.2136 , 3.9 ] // [ 25.0 , 1.0000 , 3.8 ] // [ 30.0 , 0.82845 , 3.7 ] // [ 35.0 , 0.68991 , 3.6 ] // [ 40.0 , 0.57742 , 3.5 ] // -> Steinhart–Hart coefficients (polyfit): float p0 = 1.09698417e-03, p1 = 2.39564629e-04, p2 = 2.48821437e-06, p3 = 5.84354921e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) float Rf = 220e3; // Rf = 220k float g = meas[4]/Rf; float R = (meas[0]-meas[3]) / g; // meas[0,3,4] > 0 ? float T = 0; // T/Kelvin if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); return T - 273.15; // Celsius // DFM-06: meas20 * 16 = meas24 // -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4] } #define SNbit 0x0100 int conf_out(ui8_t *conf_bits) { int conf_id; int ret = 0; int val, hl; static int chAbit, chA[2]; ui32_t SN6, SN9; conf_id = bits2val(conf_bits, 4); //if (conf_id > 6) gpx.SN6 = 0; //// gpx.sonde_typ & 0xF = 9; // SNbit? if ((gpx.sonde_typ & 0xFF) < 9 && conf_id == 6) { SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6 if ( SN6 == gpx.SN6 ) { // nur Nibble-Werte 0..9 gpx.sonde_typ = SNbit | 6; ret = 6; } else { gpx.sonde_typ = 0; } gpx.SN6 = SN6; } if (conf_id == 0xA) { // 0xACxxxxy val = bits2val(conf_bits+8, 4*5); hl = (val & 1) == 0; chA[hl] = (val >> 4) & 0xFFFF; chAbit |= 1 << hl; if (chAbit == 3) { // DFM-09: Kanal A SN9 = (chA[1] << 16) | chA[0]; if ( SN9 == gpx.SN9 ) { gpx.sonde_typ = SNbit | 9; ret = 9; } else { gpx.sonde_typ = 0; } gpx.SN9 = SN9; chAbit = 0; } } if (conf_id >= 0 && conf_id <= 4) { val = bits2val(conf_bits+4, 4*6); gpx.meas24[conf_id] = fl24(val); // DFM-09 (STM32): 24bit 0exxxxx // DFM-06 (NXP8): 20bit 0exxxx0 // fl20(bits2val(conf_bits+4, 4*5)) // = fl20(exxxx) // = fl24(exxxx0)/2^4 // meas20 * 16 = meas24 } // STM32-status: Bat, MCU-Temp if ((gpx.sonde_typ & 0xFF) == 9) { // DFM-09 (STM32) if (conf_id == 0x5) { // voltage val = bits2val(conf_bits+8, 4*4); gpx.status[0] = val/1000.0; } if (conf_id == 0x6) { // T-intern (STM32) val = bits2val(conf_bits+8, 4*4); gpx.status[1] = val/100.0; } } return ret; } void print_gpx() { int i, j; if (start) { if (option_raw == 2) { for (i = 0; i < 9; i++) { printf(" %s", dat_str[i]); } for (i = 0; i < 9; i++) { for (j = 0; j < 13; j++) dat_str[i][j] = ' '; } } else { //if (option_auto && option_verbose) printf("[%c] ", option_inv?'-':'+'); printf("[%3d] ", gpx.frnr); printf("%4d-%02d-%02d ", gpx.jahr, gpx.monat, gpx.tag); printf("%02d:%02d:%04.1f ", gpx.std, gpx.min, gpx.sek); printf(" "); printf("lat: %.6f ", gpx.lat); printf("lon: %.6f ", gpx.lon); printf("alt: %.1f ", gpx.alt); printf(" vH: %5.2f ", gpx.horiV); printf(" D: %5.1f ", gpx.dir); printf(" vV: %5.2f ", gpx.vertV); if (option_ptu) { float t = get_Temp(gpx.meas24); if (t > -270.0) printf(" T=%.1fC ", t); if (option_verbose == 2) { float t2 = get_Temp2(gpx.meas24); float t4 = get_Temp4(gpx.meas24); if (t2 > -270.0) printf(" T2=%.1fC ", t2); if (t4 > -270.0) printf(" T4=%.1fC ", t4); printf(" f0: %.2f ", gpx.meas24[0]); printf(" f3: %.2f ", gpx.meas24[3]); printf(" f4: %.2f ", gpx.meas24[4]); } } if (option_verbose == 2 && (gpx.sonde_typ & 0xFF) == 9) { printf(" U: %.2fV ", gpx.status[0]); printf(" Ti: %.1fK ", gpx.status[1]); } if (option_verbose && (gpx.sonde_typ & SNbit)) { if ((gpx.sonde_typ & 0xFF) == 6) { printf(" (ID%1d:%06X) ", gpx.sonde_typ & 0xF, gpx.SN6); } if ((gpx.sonde_typ & 0xFF) == 9) { printf(" (ID%1d:%06u) ", gpx.sonde_typ & 0xF, gpx.SN9); } gpx.sonde_typ ^= SNbit; } } printf("\n"); } } int print_frame() { int i; int nib = 0; int frid = -1; int ret0, ret1, ret2; int ret = 0; deinterleave(frame_bits+CONF, 7, hamming_conf); deinterleave(frame_bits+DAT1, 13, hamming_dat1); deinterleave(frame_bits+DAT2, 13, hamming_dat2); ret0 = hamming(hamming_conf, 7, block_conf); ret1 = hamming(hamming_dat1, 13, block_dat1); ret2 = hamming(hamming_dat2, 13, block_dat2); ret = ret0 | ret1 | ret2; if (option_raw == 1) { for (i = 0; i < 7; i++) { nib = bits2val(block_conf+S*i, S); printf("%01X", nib & 0xFF); } if (option_ecc) { if (ret0 == 0) printf(" [OK] "); else if (ret0 > 0) printf(" [KO] "); else printf(" [NO] "); } printf(" "); for (i = 0; i < 13; i++) { nib = bits2val(block_dat1+S*i, S); printf("%01X", nib & 0xFF); } if (option_ecc) { if (ret1 == 0) printf(" [OK] "); else if (ret1 > 0) printf(" [KO] "); else printf(" [NO] "); } printf(" "); for (i = 0; i < 13; i++) { nib = bits2val(block_dat2+S*i, S); printf("%01X", nib & 0xFF); } if (option_ecc) { if (ret2 == 0) printf(" [OK] "); else if (ret2 > 0) printf(" [KO] "); else printf(" [NO] "); } printf("\n"); } else if (option_ecc) { if (ret0 == 0 || ret0 > 0) { conf_out(block_conf); } if (ret1 == 0 || ret1 > 0) { frid = dat_out(block_dat1); if (frid == 8) print_gpx(); } if (ret2 == 0 || ret2 > 0) { frid = dat_out(block_dat2); if (frid == 8) print_gpx(); } } else { conf_out(block_conf); frid = dat_out(block_dat1); if (frid == 8) print_gpx(); frid = dat_out(block_dat2); if (frid == 8) print_gpx(); } return ret; } /* -------------------------------------------------------------------------- */ int main(int argc, char **argv) { FILE *fp = NULL; char *fpname = NULL; float spb = 0.0; int header_found = 0; int ret = 0; int bit; int bitpos = 0; int bitQ; int pos; int herrs, herr1; int headerlen = 0; int frm = 0, nfrms = 8; // nfrms=1,2,4,8 float mv; unsigned int mv_pos, mv0_pos; float thres = 0.6; int bitofs = 0, dif = 0; int symlen = 2; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, -vv\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); fprintf(stderr, " --ecc (Hamming ECC)\n"); fprintf(stderr, " --ths (peak threshold; default=%.1f)\n", thres); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv") == 0) ) { option_verbose = 2; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) { option_raw = 2; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 0x1; } else if ( (strcmp(*argv, "--ecc") == 0) ) { option_ecc = 1; } else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; } else if ( (strcmp(*argv, "--ths") == 0) ) { ++argv; if (*argv) { thres = atof(*argv); } else return -1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; spb = read_wav_header(fp, (float)BAUD_RATE); if ( spb < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } if ( spb < 8 ) { fprintf(stderr, "note: sample rate low\n"); } symlen = 2; headerlen = strlen(rawheader); bitofs = 2; // +1 .. +2 if (init_buffers(rawheader, headerlen, 0) < 0) { // shape=0 (alt. shape=1) fprintf(stderr, "error: init buffers\n"); return -1; }; mv = -1; mv_pos = 0; while ( f32buf_sample(fp, option_inv, 1) != EOF ) { mv0_pos = mv_pos; dif = getmaxCorr(&mv, &mv_pos, headerlen+headerlen/2); if (mv > thres) { if (mv_pos > mv0_pos) { header_found = 0; herrs = headcmp(symlen, rawheader, headerlen, mv_pos); // symlen=2 herr1 = 0; if (herrs <= 3 && herrs > 0) { herr1 = headcmp(symlen, rawheader, headerlen, mv_pos+1); if (herr1 < herrs) { herrs = herr1; herr1 = 1; } } if (herrs <= 1) header_found = 1; // herrs <= 1 bitfehler in header if (header_found) { bitpos = 0; pos = headerlen; pos /= 2; frm = 0; while ( frm < nfrms ) { // nfrms=1,2,4,8 while ( pos < BITFRAME_LEN ) { header_found = !(frm==nfrms-1 && pos>=BITFRAME_LEN-10); bitQ = read_sbit(fp, symlen, &bit, option_inv, bitofs, bitpos==0, !header_found); // symlen=2, return: zeroX/bit if (bitQ == EOF) { frm = nfrms; break; } frame_bits[pos] = 0x30 + bit; pos++; bitpos += 1; } frame_bits[pos] = '\0'; ret = print_frame(); if (pos < BITFRAME_LEN) break; pos = 0; frm += 1; //if (ret < 0) frms += 1; } header_found = 0; pos = headerlen; } } } } free_buffers(); fclose(fp); return 0; }