/* * dfm09 (dfm06) * sync header: correlation/matched filter * files: dfm09dm_dft.c demod_dft.h demod_dft.c * compile: * gcc -c demod_dft.c * gcc dfm09dm_dft.c demod_dft.o -lm -o dfm09dm_dft * * author: zilog80 */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef unsigned int ui32_t; //#include "demod_dft.c" #include "demod_dft.h" typedef struct { int frnr; int sonde_typ; ui32_t SN6; ui32_t SN; int week; int gpssec; int jahr; int monat; int tag; int std; int min; float sek; double lat; double lon; double alt; double dir; double horiV; double vertV; float meas24[5]; float status[2]; float _frmcnt; char sonde_id[16]; // "ID__:xxxxxxxx\0\0" } gpx_t; gpx_t gpx; typedef struct { int ec; float ts; } pcksts_t; pcksts_t pck[9]; char dat_str[9][13+1]; // JSON Buffer to store sonde ID char json_sonde_id[] = "DFMxx-xxxxxxxx\0\0"; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_inv = 0, // invertiert Signal option_auto = 0, option_dist = 0, // continuous pcks 0..8 option_ecc = 0, option_ptu = 0, option_ths = 0, option_json = 0, // JSON blob output (for auto_rx) wavloaded = 0; int wav_channel = 0; // audio channel: left int ptu_out = 0; int start = 0; //#define HEADLEN 32 // DFM09: Manchester2: 01->1,10->0 char rawheader[] = "10011010100110010101101001010101"; //->"0100010111001111"; // 0x45CF (big endian) #define BITFRAME_LEN 280 char frame_bits[BITFRAME_LEN+4] = "0100010111001111"; /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 2500 /* ------------------------------------------------------------------------------------ */ #define B 8 // codeword: 8 bit #define S 4 // davon 4 bit data #define HEAD 0 // 16 bit #define CONF (16+0) // 56 bit #define DAT1 (16+56) // 104 bit #define DAT2 (16+160) // 104 bit // frame: 280 bit ui8_t H[4][8] = // Parity-Check {{ 0, 1, 1, 1, 1, 0, 0, 0}, { 1, 0, 1, 1, 0, 1, 0, 0}, { 1, 1, 0, 1, 0, 0, 1, 0}, { 1, 1, 1, 0, 0, 0, 0, 1}}; ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H: // 1-bit-error-Syndrome ui8_t hamming_conf[ 7*B]; // 7*8=56 ui8_t hamming_dat1[13*B]; // 13*8=104 ui8_t hamming_dat2[13*B]; ui8_t block_conf[ 7*S]; // 7*4=28 ui8_t block_dat1[13*S]; // 13*4=52 ui8_t block_dat2[13*S]; ui32_t bits2val(ui8_t *bits, int len) { // big endian int j; ui32_t val; if ((len < 0) || (len > 32)) return -1; // = 0xFFFF val = 0; for (j = 0; j < len; j++) { val |= (bits[j] << (len-1-j)); } return val; } void deinterleave(char *str, int L, ui8_t *block) { int i, j; for (j = 0; j < B; j++) { // L = 7, 13 for (i = 0; i < L; i++) { if (str[L*j+i] >= 0x30 && str[L*j+i] <= 0x31) { block[B*i+j] = str[L*j+i] - 0x30; // ASCII -> bit } } } } int check(ui8_t code[8]) { int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt, ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser, ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision. int ret=0; for (i = 0; i < 4; i++) { // S = 4 syndrom[i] = 0; for (j = 0; j < 8; j++) { // B = 8 syndrom[i] ^= H[i][j] & code[j]; } } synval = bits2val(syndrom, 4); if (synval) { ret = -1; for (j = 0; j < 8; j++) { // 1-bit-error if (synval == He[j]) { // reicht auf databits zu pruefen, d.h. ret = j+1; // (systematischer Code) He[0..3] break; } } } else ret = 0; if (ret > 0) code[ret-1] ^= 0x1; return ret; } int hamming(ui8_t *ham, int L, ui8_t *sym) { int i, j; int ecc = 0, ret = 0; // L = 7, 13 for (i = 0; i < L; i++) { // L * 2 nibble (data+parity) if (option_ecc) { ecc = check(ham+B*i); if (ecc > 0) ret |= (1<= 0 && fr_id <= 8) { for (i = 0; i < 13; i++) { nib = bits2val(dat_bits+4*i, 4); dat_str[fr_id][i] = nib2chr(nib); } dat_str[fr_id][13] = '\0'; pck[fr_id].ts = gpx._frmcnt; // time_stamp,frame_count,... if (option_ecc) { pck[fr_id].ec = ec; // option_ecc laesst -1 garnicht durch if (ec > 0) { ui8_t ecn = 0; for (i = 0; i < 15; i++) { if ( (ec>>i)&1 ) ecn++; } pck[fr_id].ec = ecn; if ((option_dist || option_json) && ecn > 4) pck[fr_id].ec = -2; // threshold: #errors > 4 } } } if (fr_id == 0) { start = 0x1000; frnr = bits2val(dat_bits+24, 8); gpx.frnr = frnr; } if (fr_id == 1) { // 00..31: ? GPS-Sats in Sicht? msek = bits2val(dat_bits+32, 16); // UTC (= GPS - 18sec ab 1.1.2017) gpx.sek = msek/1000.0; } if (fr_id == 2) { lat = bits2val(dat_bits, 32); gpx.lat = lat/1e7; dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein gpx.horiV = dvv/1e2; } if (fr_id == 3) { lon = bits2val(dat_bits, 32); gpx.lon = lon/1e7; dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned gpx.dir = dvv/1e2; } if (fr_id == 4) { alt = bits2val(dat_bits, 32); gpx.alt = alt/1e2; dvv = (short)bits2val(dat_bits+32, 16); // signed gpx.vertV = dvv/1e2; } if (fr_id == 5) { } if (fr_id == 6) { // sat data } if (fr_id == 7) { // sat data } if (fr_id == 8) { gpx.jahr = bits2val(dat_bits, 12); gpx.monat = bits2val(dat_bits+12, 4); gpx.tag = bits2val(dat_bits+16, 5); gpx.std = bits2val(dat_bits+21, 5); gpx.min = bits2val(dat_bits+26, 6); } ret = fr_id; return ret; } // DFM-06 (NXP8) float fl20(int d) { // float20 int val, p; float f; p = (d>>16) & 0xF; val = d & 0xFFFF; f = val/(float)(1<> 16) & 0xF; f = m / pow(2,e); return f; } */ // DFM-09 (STM32) float fl24(int d) { // float24 int val, p; float f; p = (d>>20) & 0xF; val = d & 0xFFFFF; f = val/(float)(1< 0 ? float T = 0; // T/Kelvin if (meas[0]*meas[3]*meas[4] == 0) R = 0; if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0)); return T - 273.15; // Celsius // DFM-06: meas20 * 16 = meas24 // -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4] } float get_Temp2(float *meas) { // meas[0..4] // NTC-Thermistor EPCOS B57540G0502 // R/T No 8402, R25=Ro=5k // B0/100=3450 // 1/T = 1/To + 1/B log(r) , r=R/Ro // GRAW calibration data -80C..+40C on EEPROM ? // meas0 = g*(R+Rs)+ofs // meas3 = g*Rs+ofs , Rs: dfm6:10k, dfm9:20k // meas4 = g*Rf+ofs , Rf=220k float f = meas[0], f1 = meas[3], f2 = meas[4]; float B0 = 3260.0; // B/Kelvin, fit -55C..+40C float T0 = 25 + 273.15; // t0=25C float R0 = 5.0e3; // R0=R25=5k float Rf2 = 220e3; // Rf2 = Rf = 220k float g_o = f2/Rf2; // approx gain float Rs_o = f1/g_o; // = Rf2 * f1/f2; float Rf1 = Rs_o; // Rf1 = Rs: dfm6:10k, dfm9:20k float g = g_o; // gain float Rb = 0.0; // offset float R = 0; // thermistor float T = 0; // T/Kelvin if ( 8e3 < Rs_o && Rs_o < 12e3) Rf1 = 10e3; // dfm6 else if (18e3 < Rs_o && Rs_o < 22e3) Rf1 = 20e3; // dfm9 g = (f2 - f1) / (Rf2 - Rf1); Rb = (f1*Rf2-f2*Rf1)/(f2-f1); // ofs/g R = (f-f1)/g; // meas[0,3,4] > 0 ? if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0)); if (option_ptu && ptu_out && option_verbose == 3) { printf(" (Rso: %.1f , Rb: %.1f)", Rs_o/1e3, Rb/1e3); } return T - 273.15; // DFM-06: meas20 * 16 = meas24 } float get_Temp4(float *meas) { // meas[0..4] // NTC-Thermistor EPCOS B57540G0502 // [ T/C , R/R25 , alpha ] : // [ -55.0 , 51.991 , 6.4 ] // [ -50.0 , 37.989 , 6.2 ] // [ -45.0 , 28.07 , 5.9 ] // [ -40.0 , 20.96 , 5.7 ] // [ -35.0 , 15.809 , 5.5 ] // [ -30.0 , 12.037 , 5.4 ] // [ -25.0 , 9.2484 , 5.2 ] // [ -20.0 , 7.1668 , 5.0 ] // [ -15.0 , 5.5993 , 4.9 ] // [ -10.0 , 4.4087 , 4.7 ] // [ -5.0 , 3.4971 , 4.6 ] // [ 0.0 , 2.7936 , 4.4 ] // [ 5.0 , 2.2468 , 4.3 ] // [ 10.0 , 1.8187 , 4.2 ] // [ 15.0 , 1.4813 , 4.0 ] // [ 20.0 , 1.2136 , 3.9 ] // [ 25.0 , 1.0000 , 3.8 ] // [ 30.0 , 0.82845 , 3.7 ] // [ 35.0 , 0.68991 , 3.6 ] // [ 40.0 , 0.57742 , 3.5 ] // -> Steinhart–Hart coefficients (polyfit): float p0 = 1.09698417e-03, p1 = 2.39564629e-04, p2 = 2.48821437e-06, p3 = 5.84354921e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) float Rf = 220e3; // Rf = 220k float g = meas[4]/Rf; float R = (meas[0]-meas[3]) / g; // meas[0,3,4] > 0 ? float T = 0; // T/Kelvin if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); return T - 273.15; // Celsius // DFM-06: meas20 * 16 = meas24 // -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4] } #define SNbit 0x0100 int conf_out(ui8_t *conf_bits, int ec) { int ret = 0; int val; ui8_t conf_id; ui8_t hl; ui32_t SN6, SN; static int chAbit, chA[2]; static int chCbit, chC[2]; static int chDbit, chD[2]; static int ch7bit, ch7[2]; static ui32_t SN_A, SN_C, SN_D, SN_7; static ui8_t max_ch; static ui8_t nul_ch; static ui8_t sn2_ch, sn_ch; static ui32_t SN_X; static int chXbit, chX[2]; static ui8_t dfm6typ; conf_id = bits2val(conf_bits, 4); if (conf_id > 4 && bits2val(conf_bits+8, 4*5) == 0) nul_ch = bits2val(conf_bits, 8); dfm6typ = ((nul_ch & 0xF0)==0x50) && (nul_ch & 0x0F); if (dfm6typ) ptu_out = 6; if (dfm6typ && (gpx.sonde_typ & 0xF) > 6) { // reset if 0x5A, 0x5B (DFM-06) gpx.sonde_typ = 0; max_ch = conf_id; } if (conf_id > 4 && conf_id > max_ch) max_ch = conf_id; // mind. 5 Kanaele // reset? lower 0xsCaaaab? if (conf_id > 4 && conf_id == (nul_ch>>4)+1) { sn2_ch = bits2val(conf_bits, 8); if (option_auto) { sn_ch = ((sn2_ch>>4) & 0xF); if (conf_id == sn_ch) { if ( (nul_ch & 0x58) == 0x58 ) { // 0x5A, 0x5B SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6 if (SN6 == gpx.SN6 && SN6 != 0) { // nur Nibble-Werte 0..9 gpx.sonde_typ = SNbit | 6; ptu_out = 6; sprintf(gpx.sonde_id, "ID06:%6X", gpx.SN6); sprintf(json_sonde_id, "DFM06-%6X", gpx.SN6); } else { // reset gpx.sonde_typ = 0; sprintf(json_sonde_id, "DFMxx-xxxxxxxx"); //json_sonde_id[0] = '\0'; } gpx.SN6 = SN6; } else if ( (sn2_ch & 0xF) == 0xC // 0xsCaaaab, s==sn_ch , s: 0xA=DFM-09 , 0xC=DFM-17? 0xD=? || (sn2_ch & 0xF) == 0x0 ) // 0xs0aaaab, s==sn_ch , s: 0x7,0x8: pilotsonde PS-15? { val = bits2val(conf_bits+8, 4*5); hl = (val & 1); chX[hl] = (val >> 4) & 0xFFFF; chXbit |= 1 << hl; if (chXbit == 3) { SN = (chX[0] << 16) | chX[1]; if ( SN == SN_X || SN_X == 0 ) { gpx.sonde_typ = SNbit | sn_ch; gpx.SN = SN; if (sn_ch == 0xA /*&& (sn2_ch & 0xF) == 0xC*/) ptu_out = 9; else ptu_out = 0; // PS-15 ? (sn2_ch & 0xF) == 0x0 : ptu_out = 0 // DFM-17? (sn_ch == 0xC) ptu_out = 9 ? // test 0xD ...? if ( (gpx.sonde_typ & 0xF) == 0xA) { sprintf(gpx.sonde_id, "ID09:%6u", gpx.SN); sprintf(json_sonde_id, "DFM09-%6u", gpx.SN); } else { sprintf(gpx.sonde_id, "ID-%1X:%6u", gpx.sonde_typ & 0xF, gpx.SN); sprintf(json_sonde_id, "DFMx%1X-%6u", gpx.sonde_typ & 0xF,gpx.SN); } } else { // reset gpx.sonde_typ = 0; sprintf(json_sonde_id, "DFMxx-xxxxxxxx"); //json_sonde_id[0] = '\0'; } SN_X = SN; chXbit = 0; } } ret = (gpx.sonde_typ & 0xF); } } } if (option_auto == 0) { // gibt es Kanaele > 6 (2-teilige ID)? // if (conf_id > 6) gpx.SN6 = 0; // -> DFM-09,PS-15 // SNbit? // // SN/ID immer im letzten Kanal? davor xy00000-Kanal? (mind. 1) if ((gpx.sonde_typ & 0xF) < 7 && conf_id == 6) { SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6 if (SN6 == gpx.SN6 && SN6 != 0) { // nur Nibble-Werte 0..9 gpx.sonde_typ = SNbit | 6; ptu_out = 6; ret = 6; sprintf(gpx.sonde_id, "ID06:%6X", gpx.SN6); sprintf(json_sonde_id, "DFM06-%6X", gpx.SN6); } else { gpx.sonde_typ = 0; } gpx.SN6 = SN6; } if (conf_id == 0xA) { // 0xACxxxxy , DFM-09 val = bits2val(conf_bits+8, 4*5); hl = (val & 1); // val&0xF 0,1? chA[hl] = (val >> 4) & 0xFFFF; chAbit |= 1 << hl; if (chAbit == 3) { // DFM-09: Kanal A SN = (chA[0] << 16) | chA[1]; if ( SN == SN_A ) { gpx.sonde_typ = SNbit | 0xA; gpx.SN = SN; ptu_out = 9; ret = 9; sprintf(gpx.sonde_id, "ID09:%6u", gpx.SN); sprintf(json_sonde_id, "DFM09-%6u", gpx.SN); } else { gpx.sonde_typ = 0; } SN_A = SN; chAbit = 0; } } if (conf_id == 0xC) { // 0xCCxxxxy , DFM-17? val = bits2val(conf_bits+8, 4*5); hl = (val & 1); chC[hl] = (val >> 4) & 0xFFFF; chCbit |= 1 << hl; if (chCbit == 3) { // DFM-17? Kanal C SN = (chC[0] << 16) | chC[1]; if ( SN == SN_C ) { gpx.sonde_typ = SNbit | 0xC; gpx.SN = SN; ptu_out = 9; // ? ret = 17; sprintf(gpx.sonde_id, "ID-%1X:%6u", gpx.sonde_typ & 0xF, gpx.SN); sprintf(json_sonde_id, "DFM17-%6u", gpx.SN); } else { gpx.sonde_typ = 0; } SN_C = SN; chCbit = 0; } } if (conf_id == 0xD) { // 0xDCxxxxy , DFM-17? val = bits2val(conf_bits+8, 4*5); hl = (val & 1); chD[hl] = (val >> 4) & 0xFFFF; chDbit |= 1 << hl; if (chDbit == 3) { // DFM-17? Kanal D SN = (chD[0] << 16) | chD[1]; if ( SN == SN_D ) { gpx.sonde_typ = SNbit | 0xD; gpx.SN = SN; ptu_out = 0; // ... ret = 18; sprintf(gpx.sonde_id, "ID-%1X:%6u", gpx.sonde_typ & 0xF, gpx.SN); sprintf(json_sonde_id, "DFM17-%6u", gpx.SN); } else { gpx.sonde_typ = 0; } SN_D = SN; chDbit = 0; } } if (conf_id == 0x7) { // 0x70xxxxy , pilotsonde PS-15? val = bits2val(conf_bits+8, 4*5); hl = (val & 1); ch7[hl] = (val >> 4) & 0xFFFF; ch7bit |= 1 << hl; if (ch7bit == 3) { // PS-15: Kanal 7 SN = (ch7[0] << 16) | ch7[1]; if ( SN == SN_7 ) { gpx.sonde_typ = SNbit | 0x7; gpx.SN = SN; ptu_out = 0; ret = 15; sprintf(gpx.sonde_id, "ID15:%6u", gpx.SN); sprintf(json_sonde_id, "DFM15-%6u", gpx.SN); } else { gpx.sonde_typ = 0; } SN_7 = SN; ch7bit = 0; } } } if (conf_id >= 0 && conf_id <= 4) { val = bits2val(conf_bits+4, 4*6); gpx.meas24[conf_id] = fl24(val); // DFM-09 (STM32): 24bit 0exxxxx // DFM-06 (NXP8): 20bit 0exxxx0 // fl20(bits2val(conf_bits+4, 4*5)) // = fl20(exxxx) // = fl24(exxxx0)/2^4 // meas20 * 16 = meas24 } // STM32-status: Bat, MCU-Temp if ((gpx.sonde_typ & 0xF) == 0xA) { // DFM-09 (STM32) if (conf_id == 0x5) { // voltage val = bits2val(conf_bits+8, 4*4); gpx.status[0] = val/1000.0; } if (conf_id == 0x6) { // T-intern (STM32) val = bits2val(conf_bits+8, 4*4); gpx.status[1] = val/100.0; } } return ret; } void print_gpx() { int i, j; int contgps = 0; int output = 0; int jsonout = 0; output |= start; if (option_json && start == 0) { // JSON: initial reset sprintf(json_sonde_id, "DFMxx-xxxxxxxx"); //json_sonde_id[0] = '\0'; } for (i = 0; i < 9/*8*/; i++) { // trigger: pck8 if ( !( (option_dist || option_json) && pck[i].ec < 0) ) { if (pck[8].ts - pck[i].ts < 6.0) { output |= (1<= 2) printf("<%c> ", option_inv?'-':'+'); printf("[%3d] ", gpx.frnr); printf("%4d-%02d-%02d ", gpx.jahr, gpx.monat, gpx.tag); printf("%02d:%02d:%04.1f ", gpx.std, gpx.min, gpx.sek); if (option_verbose >= 2 && option_ecc) printf("(%1X,%1X,%1X) ", pck[0].ec&0xF, pck[8].ec&0xF, pck[1].ec&0xF); printf(" "); printf(" lat: %.5f ", gpx.lat); if (option_verbose >= 2 && option_ecc) printf("(%1X) ", pck[2].ec&0xF); printf(" lon: %.5f ", gpx.lon); if (option_verbose >= 2 && option_ecc) printf("(%1X) ", pck[3].ec&0xF); printf(" alt: %.1f ", gpx.alt); if (option_verbose >= 2 && option_ecc) printf("(%1X) ", pck[4].ec&0xF); printf(" vH: %5.2f ", gpx.horiV); printf(" D: %5.1f ", gpx.dir); printf(" vV: %5.2f ", gpx.vertV); if (option_ptu && ptu_out) { float t = get_Temp(gpx.meas24); if (t > -270.0) printf(" T=%.1fC ", t); if (option_verbose == 3) { float t2 = get_Temp2(gpx.meas24); float t4 = get_Temp4(gpx.meas24); if (t2 > -270.0) printf(" T2=%.1fC ", t2); if (t4 > -270.0) printf(" T4=%.1fC ", t4); printf(" f0: %.2f ", gpx.meas24[0]); printf(" f3: %.2f ", gpx.meas24[3]); printf(" f4: %.2f ", gpx.meas24[4]); } } if (option_verbose == 3 && (gpx.sonde_typ & 0xF) == 0xA) { printf(" U: %.2fV ", gpx.status[0]); printf(" Ti: %.1fK ", gpx.status[1]); } if (option_verbose) { if (gpx.sonde_typ & SNbit) { printf(" (%s) ", gpx.sonde_id); gpx.sonde_typ ^= SNbit; } } } printf("\n"); if (option_json && jsonout) { // Print JSON blob // valid sonde_ID? printf("{ \"frame\": %d, \"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f", gpx.frnr, json_sonde_id, gpx.jahr, gpx.monat, gpx.tag, gpx.std, gpx.min, gpx.sek, gpx.lat, gpx.lon, gpx.alt, gpx.horiV, gpx.dir, gpx.vertV); if (ptu_out) { // get temperature float t = get_Temp(gpx.meas24); // ecc-valid temperature? if (t > -270.0) printf(", \"temp\": %.1f", t); } printf(" }\n"); printf("\n"); } } for (i = 0; i < 9; i++) pck[i].ec = -1; } int print_frame(float frmcnt) { int i; int nib = 0; int frid = -1; int ret0, ret1, ret2; int ret = 0; gpx._frmcnt = frmcnt; deinterleave(frame_bits+CONF, 7, hamming_conf); deinterleave(frame_bits+DAT1, 13, hamming_dat1); deinterleave(frame_bits+DAT2, 13, hamming_dat2); ret0 = hamming(hamming_conf, 7, block_conf); ret1 = hamming(hamming_dat1, 13, block_dat1); ret2 = hamming(hamming_dat2, 13, block_dat2); ret = ret0 | ret1 | ret2; if (option_raw == 1) { for (i = 0; i < 7; i++) { nib = bits2val(block_conf+S*i, S); printf("%01X", nib & 0xFF); } if (option_ecc) { if (ret0 == 0) printf(" [OK] "); else if (ret0 > 0) printf(" [KO] "); else printf(" [NO] "); } printf(" "); for (i = 0; i < 13; i++) { nib = bits2val(block_dat1+S*i, S); printf("%01X", nib & 0xFF); } if (option_ecc) { if (ret1 == 0) printf(" [OK] "); else if (ret1 > 0) printf(" [KO] "); else printf(" [NO] "); } printf(" "); for (i = 0; i < 13; i++) { nib = bits2val(block_dat2+S*i, S); printf("%01X", nib & 0xFF); } if (option_ecc) { if (ret2 == 0) printf(" [OK] "); else if (ret2 > 0) printf(" [KO] "); else printf(" [NO] "); } printf("\n"); } else if (option_ecc) { if (ret0 == 0 || ret0 > 0) { conf_out(block_conf, ret0); } if (ret1 == 0 || ret1 > 0) { frid = dat_out(block_dat1, ret1); if (frid == 8) print_gpx(); } if (ret2 == 0 || ret2 > 0) { frid = dat_out(block_dat2, ret2); if (frid == 8) print_gpx(); } } else { conf_out(block_conf, ret0); frid = dat_out(block_dat1, ret1); if (frid == 8) print_gpx(); frid = dat_out(block_dat2, ret2); if (frid == 8) print_gpx(); } return ret; } /* -------------------------------------------------------------------------- */ int main(int argc, char **argv) { FILE *fp = NULL; char *fpname = NULL; float spb = 0.0; int header_found = 0; int ret = 0; int bit; int bitpos = 0; int bitQ; int pos; int herrs, herr1; int headerlen = 0; int frm = 0, nfrms = 8; // nfrms=1,2,4,8 int k, K; float mv; unsigned int mv_pos, mv0_pos; int mp = 0; float frm_cnt = 0.0; float thres = 0.65; int symlen = 2; int bitofs = 2; // +1 .. +2 int shift = 0; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, -vv\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); fprintf(stderr, " --ecc (Hamming ECC)\n"); fprintf(stderr, " --ths (peak threshold; default=%.1f)\n", thres); fprintf(stderr, " --json (JSON output)\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv" ) == 0) ) { option_verbose = 2; } else if ( (strcmp(*argv, "-vvv") == 0) ) { option_verbose = 3; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) { option_raw = 2; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 0x1; } else if ( (strcmp(*argv, "--ecc") == 0) ) { option_ecc = 1; } else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; //ptu_out = 1; // force ptu (non PS-15) } else if ( (strcmp(*argv, "--auto") == 0) ) { option_auto = 1; } else if ( (strcmp(*argv, "--dist") == 0) ) { option_dist = 1; option_ecc = 1; } else if ( (strcmp(*argv, "--json") == 0) ) { option_json = 1; option_ecc = 1; } else if ( (strcmp(*argv, "--ch2") == 0) ) { wav_channel = 1; } // right channel (default: 0=left) else if ( (strcmp(*argv, "--ths") == 0) ) { ++argv; if (*argv) { thres = atof(*argv); } else return -1; } else if ( (strcmp(*argv, "-d") == 0) ) { ++argv; if (*argv) { shift = atoi(*argv); if (shift > 4) shift = 4; if (shift < -4) shift = -4; } else return -1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; spb = read_wav_header(fp, (float)BAUD_RATE, wav_channel); if ( spb < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } if ( spb < 8 ) { fprintf(stderr, "note: sample rate low\n"); } for (k = 0; k < 9; k++) pck[k].ec = -1; // init ecc-status symlen = 2; bitofs += shift; headerlen = strlen(rawheader); K = init_buffers(rawheader, headerlen, 0); // shape=0 (alt. shape=1) if ( K < 0 ) { fprintf(stderr, "error: init buffers\n"); return -1; }; k = 0; mv = 0; mv_pos = 0; while ( f32buf_sample(fp, option_inv) != EOF ) { k += 1; if (k >= K-4) { mv0_pos = mv_pos; mp = getCorrDFT(K, 0, &mv, &mv_pos); if (option_auto == 0 && mv < 0) mv = 0; k = 0; } else { mv = 0.0; continue; } if ( mp > 0 && (mv > thres || mv < -thres)) { if (mv_pos > mv0_pos) { header_found = 0; herrs = headcmp(symlen, rawheader, headerlen, mv_pos, mv<0, 0); // symlen=2 herr1 = 0; if (herrs <= 3 && herrs > 0) { herr1 = headcmp(symlen, rawheader, headerlen, mv_pos+1, mv<0, 0); if (herr1 < herrs) { herrs = herr1; herr1 = 1; } } if (herrs <= 1) { header_found = 1; // herrs <= 1 bitfehler in header if (mv < 0) header_found = -header_found; } if (header_found < 0) { // read_sbit(option_inv) buffer reset? if (option_auto) option_inv ^= 0x1; else header_found = 0; } if (header_found) { bitpos = 0; pos = headerlen; pos /= 2; //if (fabs(mv) > 0.85) nfrms = 8; else nfrms = 4; // test OK/KO/NO count frm = 0; while ( frm < nfrms ) { // nfrms=1,2,4,8 frm_cnt = mv_pos/(spb*2.0*BITFRAME_LEN) + frm; while ( pos < BITFRAME_LEN ) { bitQ = read_sbit(fp, symlen, &bit, option_inv, bitofs, bitpos==0); // symlen=2 if (bitQ == EOF) { frm = nfrms; break; } frame_bits[pos] = 0x30 + bit; pos++; bitpos += 1; } frame_bits[pos] = '\0'; ret = print_frame(frm_cnt); if (pos < BITFRAME_LEN) break; pos = 0; frm += 1; //if (ret < 0) frms += 1; } header_found = 0; pos = headerlen; } } } } free_buffers(); fclose(fp); return 0; }