/* C34 (empfohlen: sample rate 48kHz) gcc c34dft.c -lm -o c34dft */ #include #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif // optional JSON "version" // (a) set global // gcc -DVERSION_JSN [-I] ... #ifdef VERSION_JSN #include "version_jsn.h" #endif // or // (b) set local compiler option, e.g. // gcc -DVER_JSN_STR=\"0.0.2\" ... typedef unsigned char ui8_t; static int option_verbose = 0, option_raw = 0, option_ptu = 0, option_dft = 0, option_json = 0, wavloaded = 0; typedef struct { //int frnr; int sn; int jahr; int monat; int tag; int std; int min; int sek; float lat; float lon; float alt; unsigned chk; float T; float RH; int jsn_freq; // freq/kHz (SDR) } gpx_t; static gpx_t gpx; /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 2400 static unsigned int sample_rate = 0; static int bits_sample = 0, channels = 0; //float samples_per_bit = 0; static int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } static int read_wav_header(FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if ((bits_sample != 8) && (bits_sample != 16)) return -1; //samples_per_bit = sample_rate/(float)BAUD_RATE; //fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit); return 0; } #define EOF_INT 0x1000000 static unsigned int sample_count; static int read_signed_sample(FILE *fp) { // int = i32_t int byte, i, ret; // EOF -> 0x1000000 for (i = 0; i < channels; i++) { // i = 0: links bzw. mono byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == 0) ret = byte; if (bits_sample == 16) { byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == 0) ret += byte << 8; } } if (bits_sample == 8) return ret-128; if (bits_sample == 16) return (short)ret; return ret; } /* ------------------------------------------------------------------------------------ */ #define LOG2N 6 // 2^7 = 128 = N #define N 64 // 128 Vielfaches von 22 oder 10 unten #define WLEN 40 // (2*(48000/BAUDRATE)) #define BITS (4+8) // 1110 bbbbbbbb (oder: 0 bbbbbbbb 1 11) (8N1, 11-idle) #define LEN_BITFRAME 84 // 7*(4+8) #define HEADLEN 28 static char header[] = "1110000000001110111111111110"; static char buf[HEADLEN+1] = "x"; static int bufpos = -1; static char headerstr[] = "1110 00000000 1110 11111111"; static int bitpos; static ui8_t bits[LEN_BITFRAME+1] = { 1, 1, 1, 0}; static ui8_t bytes[LEN_BITFRAME/BITS]; static float x[N]; static float complex Z[N], w[N], expw[N][N], ew[N*N]; static int ptr; static float Hann[N], buffer[N+1], xn[N]; static void init_dft() { int i, k, n; for (i = 0; i < N; i++) Hann[i] = 0; for (i = 0; i < WLEN; i++) Hann[i] = 0.5 * (1 - cos( 2 * M_PI * i / (float)(WLEN-1) ) ); //Hann[i+(N-1-WLEN)/2] = 0.5 * (1 - cos( 2 * M_PI * i / (float)(WLEN-1) ) ); for (k = 0; k < N; k++) { w[k] = -I*2*M_PI * k / (float)N; for (n = 0; n < N; n++) { expw[k][n] = cexp( w[k] * n ); ew[k*n] = expw[k][n]; } } } static float dft_k(int k) { int n; float complex Zk; Zk = 0; for (n = 0; n < N; n++) { Zk += xn[n] * ew[k*n]; } return cabs(Zk); } static void dft() { int k, n; for (k = 0; k < N/2; k++) { // xn reell, brauche nur N/2 unten Z[k] = 0; for (n = 0; n < N; n++) { Z[k] += xn[n] * ew[k*n]; } } } static void dft2() { int s, l, l2, i, j, k; float complex w1, w2, T; for (i = 0; i < N; i++) { Z[i] = (float complex)xn[i]; } j = 1; for (i = 1; i < N; i++) { if (i < j) { T = Z[j-1]; Z[j-1] = Z[i-1]; Z[i-1] = T; } k = N/2; while (k < j) { j = j - k; k = k/2; } j = j + k; } for (s = 0; s < LOG2N; s++) { l2 = 1 << s; l = l2 << 1; w1 = (float complex)1.0; w2 = cexp(-I*M_PI/(float)l2); for (j = 1; j <= l2; j++) { for (i = j; i <= N; i += l) { k = i + l2; T = Z[k-1] * w1; Z[k-1] = Z[i-1] - T; Z[i-1] = Z[i-1] + T; } w1 = w1 * w2; } } } static int max_bin() { int k, kmax; float max; max = 0; kmax = 0; for (k = 0; k < N/2-1; k++) { if (cabs(Z[k]) > max) { max = cabs(Z[k]); kmax = k; } } return kmax; } static float freq2bin(int f) { return f * N / (float)sample_rate; } static int bin2freq(int k) { return sample_rate * k / N; } /* ------------------------------------------------------------------------------------ */ static void inc_bufpos() { bufpos = (bufpos+1) % HEADLEN; } static int compare() { int i=0, j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != header[HEADLEN-1-i]) break; j--; i++; } return i; } static int bits2bytes(ui8_t bits[], ui8_t bytes[]) { int i, j, byteval=0, d=1; for (j = 0; j < 7; j++) { byteval=0; d=1; for (i = 4; i < BITS; i++) { // little endian /* for (i = 7; i >= 0; i--) { // big endian */ if (bits[BITS*j+i] == 1) byteval += d; else /*(bits[BITS*j+i] == 0)*/ byteval += 0; d <<= 1; } bytes[j] = byteval; } return 0; } static void printGPX() { int i; if (gpx.sn) printf("( %d ) ", gpx.sn); printf(" %04d-%02d-%02d", gpx.jahr, gpx.monat, gpx.tag); printf(" %02d:%02d:%02d", gpx.std, gpx.min, gpx.sek); printf(" "); printf(" lat: %.5f", gpx.lat); printf(" lon: %.5f", gpx.lon); printf(" alt: %.1f", gpx.alt); if (option_ptu && (gpx.T > -273.0 || gpx.RH > -0.5)) { printf(" "); if (gpx.T > -273.0) printf(" T=%.1fC", gpx.T); //if (gpx.RH > -0.5) printf(" RH=%.0f%%", gpx.RH); } if (option_verbose) { printf(" # "); for (i = 0; i < 5; i++) printf("%d", (gpx.chk>>i)&1); if (option_ptu) for (i = 6; i < 7; i++) printf("%d", (gpx.chk>>i)&1); } printf("\n"); } static void printJSON() { // UTC or GPS time ? char *ver_jsn = NULL; char json_sonde_id[] = "C34-xxxx\0\0\0\0\0\0\0"; if (gpx.sn) { sprintf(json_sonde_id, "C34-%u", gpx.sn); } printf("{ \"type\": \"%s\"", "C34"); printf(", \"id\": \"%s\", ", json_sonde_id); printf("\"datetime\": \"%04d-%02d-%02dT%02d:%02d:%02dZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.1f", gpx.jahr, gpx.monat, gpx.tag, gpx.std, gpx.min, gpx.sek, gpx.lat, gpx.lon, gpx.alt); if (option_ptu && (gpx.T > -273.0 || gpx.RH > -0.5)) { if (gpx.T > -273.0) printf(", \"temp\": %.1f", gpx.T); //if (gpx.RH > -0.5) printf(", \"humidity\": %.1f", gpx.RH); } if (gpx.jsn_freq > 0) { printf(", \"freq\": %d", gpx.jsn_freq); } #ifdef VER_JSN_STR ver_jsn = VER_JSN_STR; #endif if (ver_jsn && *ver_jsn != '\0') printf(", \"version\": \"%s\"", ver_jsn); printf(" }\n"); //printf("\n"); } // Chechsum Fletcher16 static unsigned check2(ui8_t *bytes, int len) { int sum1, sum2; int i; sum1 = 0; sum2 = 0; for (i = 0; i < len; i++) { sum1 += bytes[i]; sum2 += (len-i)*bytes[i]; } sum1 = sum1 & 0xFF; sum2 = (-1-sum2) & 0xFF; // = (~sum2) & 0xFF; return sum2 | (sum1<<8); } /* // equivalent static unsigned check16(ui8_t *bytes, int len) { unsigned sum1, sum2; int i; sum1 = sum2 = 0; for (i = 0; i < len; i++) { sum1 = (sum1 + bytes[i]) % 0x100; sum2 = (sum2 + sum1) % 0x100; } sum2 = (~sum2) & 0xFF; // 1's complement return sum2 | (sum1<<8); } */ static float NMEAll(int ll) { // NMEA GGA,GLL: ll/1e4=(D)DDMM.mmmm int deg = ll / 1000000; float min = (ll - deg*1000000)/1e4; return deg+min/60.0; } static int evalBytes() { int i, val = 0; ui8_t id = bytes[0]; unsigned check; static unsigned int cnt_dat = -1, cnt_tim = -1, cnt_lat = -1, cnt_lon = -1, cnt_alt = -1, cnt_sn = -1, cnt_t3 = -1, cnt_rh = -1; check = ((bytes[5]<<8)|bytes[6]) != check2(bytes, 5); for (i = 0; i < 4; i++) val |= bytes[4-i] << (8*i); if (id == 0x14 ) { // date int tag = val / 10000; int mon = (val-tag*10000) / 100; int jrz = val % 100; gpx.tag = tag; gpx.monat = mon; gpx.jahr = 2000+jrz; gpx.chk = (gpx.chk & ~(0x1<<0)) | (check<<0); if (check==0) cnt_dat = sample_count; } else if (id == 0x15 ) { // time int std = val / 10000; int min = (val-std*10000) / 100; int sek = val % 100; gpx.std = std; gpx.min = min; gpx.sek = sek; gpx.chk = (gpx.chk & ~(0x1<<1)) | (check<<1); if (check==0) cnt_tim = sample_count; } else if (id == 0x16 ) { // lat: wie NMEA mit Faktor 1e4 gpx.lat = NMEAll(val); gpx.chk = (gpx.chk & ~(0x1<<2)) | (check<<2); if (check==0) cnt_lat = sample_count; } else if (id == 0x17 ) { // lon: wie NMEA mit Faktor 1e4 gpx.lon = NMEAll(val); gpx.chk = (gpx.chk & ~(0x1<<3)) | (check<<3); if (check==0) cnt_lon = sample_count; } else if (id == 0x18 ) { // alt: decimeter gpx.alt = val/10.0; gpx.chk = (gpx.chk & ~(0x1<<4)) | (check<<4); if (check==0) cnt_alt = sample_count; } else if (id == 0x64 ) { // serial number if (check==0) gpx.sn = val; // 16 bit //gpx.chk = (gpx.chk & ~(0x1<<15)) | (check<<15); //if (check==0) cnt_sn = sample_count; } if (id == 0x18) { printGPX(); if (option_json && check==0) { if ( ((cnt_dat|cnt_tim|cnt_lat|cnt_lon)&0x80000000)==0 && cnt_alt - cnt_dat < sample_rate && cnt_alt - cnt_tim < sample_rate && cnt_alt - cnt_lat < sample_rate && cnt_alt - cnt_lon < sample_rate ) { if (cnt_alt - cnt_t3 > sample_rate) gpx.T = -273.15; if (cnt_alt - cnt_rh > sample_rate) gpx.RH = -1.0; printJSON(); } } } // PTU floats if (id == 0x03) { // temperature float t = -273.15; memcpy(&t, &val, 4); if (t < -273.0 || t > 100.0) t = -273.15; gpx.T = t; gpx.chk = (gpx.chk & ~(0x1<<6)) | (check<<6); if (check==0) cnt_t3 = sample_count; } return check; } static void printRaw() { int j; unsigned chkbyt = (bytes[5]<<8) | bytes[6]; unsigned chksum = check2(bytes, 5); //if (chksum == chkbyt) { printf("%s", headerstr); for (j = 0; j < LEN_BITFRAME; j++) { if (j%BITS == 0) printf(" "); if (j%BITS == 4) printf(" "); printf("%d", bits[j]); } printf(" : "); printf("%02X%02X ", 0x00, 0xFF); printf("%02X ", bytes[0]); printf("%02X%02X%02X%02X ", bytes[1], bytes[2], bytes[3], bytes[4]); printf("%02X%02X", bytes[5], bytes[6]); // chkbyt if (option_verbose) { printf(" # %04X", chksum); if (chksum == chkbyt) printf(" [OK]"); else printf(" [NO]"); } printf("\n"); } } int main(int argc, char *argv[]) { FILE *fp; char *fpname; int sample; int i, j, kmax, k0, k1; int bit = 8, bit0 = 8; int pos = 0, pos0 = 0; int header_found = 0; int bitlen; // sample_rate/BAUD_RATE int len; float k_f0, k_f1, k_df; float cb0, cb1; int cfreq = -1; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " -r, --raw\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; } else if ( (strcmp(*argv, "-d1") == 0) || (strcmp(*argv, "--dft1") == 0) ) { option_dft = 1; } else if ( (strcmp(*argv, "-d2") == 0) || (strcmp(*argv, "--dft2") == 0) ) { option_dft = 2; } else if ( (strcmp(*argv, "--json") == 0) ) { option_dft = 0; option_verbose = 1; option_json = 1; } else if ( (strcmp(*argv, "--jsn_cfq") == 0) ) { int frq = -1; // center frequency / Hz ++argv; if (*argv) frq = atoi(*argv); else return -1; if (frq < 300000000) frq = -1; cfreq = frq; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; gpx.jsn_freq = 0; if (cfreq > 0) gpx.jsn_freq = (cfreq+500)/1000; i = read_wav_header(fp); if (i) { fclose(fp); return -1; } bitlen = sample_rate/BAUD_RATE; k_f0 = freq2bin(4700); // bit0: 4800Hz k_f1 = freq2bin(2900); // bit1: 3000Hz k_df = fabs(k_f0-k_f1)/2.5; k0 = (int)(k_f0+.5); k1 = (int)(k_f1+.5); init_dft(); ptr = -1; sample_count = -1; while ((sample=read_signed_sample(fp)) < EOF_INT) { ptr++; sample_count++; if (ptr == N) ptr = 0; buffer[ptr] = sample / (float)(1< k_f0-k_df && kmax < k_f0+k_df) bit = 0; // kmax = freq2bin(4800): 4800Hz else if (kmax > k_f1-k_df && kmax < k_f1+k_df) bit = 1; // kmax = freq2bin(3000): 3000Hz } else { cb0 = dft_k(k0); cb1 = dft_k(k1); if ( cb0 > cb1 ) bit = 0; // freq2bin(4800) : 4800Hz else bit = 1; // freq2bin(3000) : 3000Hz } if (bit != bit0) { pos0 = pos; pos = sample_count; //sample_count-(N-1)/2 len = (pos-pos0+bitlen/2)/bitlen; //(pos-pos0)/bitlen + 0.5; for (i = 0; i < len; i++) { inc_bufpos(); buf[bufpos] = 0x30 + bit0; if (!header_found) { if (compare() >= HEADLEN) { header_found = 1; bitpos = 4; } } else { bits[bitpos] = bit0; bitpos++; if (bitpos >= LEN_BITFRAME) { bits2bytes(bits, bytes); if (option_raw) { printRaw(); } else { evalBytes(); } bitpos = 0; header_found = 0; } } } bit0 = bit; } } printf("\n"); fclose(fp); return 0; }