OpenDroneMap-ODM/modules/odm_georef/src/modifiedPclFunctions.cpp

337 wiersze
13 KiB
C++
Executable File

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "modifiedPclFunctions.hpp"
int saveOBJFile(const std::string &file_name, const pcl::TextureMesh &tex_mesh, unsigned precision)
{
if (tex_mesh.cloud.data.empty ())
{
PCL_ERROR ("[pcl::io::saveOBJFile] Input point cloud has no data!\n");
return (-1);
}
// Open file
std::ofstream fs;
fs.precision (precision);
fs.open (file_name.c_str ());
// Define material file
std::string mtl_file_name = file_name.substr (0, file_name.find_last_of (".")) + ".mtl";
// Strip path for "mtllib" command
std::string mtl_file_name_nopath = mtl_file_name;
//std::cout << mtl_file_name_nopath << std::endl;
mtl_file_name_nopath.erase (0, mtl_file_name.find_last_of ('/') + 1);
/* Write 3D information */
// number of points
int nr_points = tex_mesh.cloud.width * tex_mesh.cloud.height;
int point_size = tex_mesh.cloud.data.size () / nr_points;
// mesh size
int nr_meshes = tex_mesh.tex_polygons.size ();
// number of faces for header
int nr_faces = 0;
for (int m = 0; m < nr_meshes; ++m)
nr_faces += tex_mesh.tex_polygons[m].size ();
// Write the header information
fs << "####" << std::endl;
fs << "# OBJ dataFile simple version. File name: " << file_name << std::endl;
fs << "# Vertices: " << nr_points << std::endl;
fs << "# Faces: " <<nr_faces << std::endl;
fs << "# Material information:" << std::endl;
fs << "mtllib " << mtl_file_name_nopath << std::endl;
fs << "####" << std::endl;
// Write vertex coordinates
fs << "# Vertices" << std::endl;
for (int i = 0; i < nr_points; ++i)
{
int xyz = 0;
// "v" just be written one
bool v_written = false;
for (size_t d = 0; d < tex_mesh.cloud.fields.size (); ++d)
{
int count = tex_mesh.cloud.fields[d].count;
if (count == 0)
count = 1; // we simply cannot tolerate 0 counts (coming from older converter code)
int c = 0;
// adding vertex
if ((tex_mesh.cloud.fields[d].datatype == pcl::PCLPointField::FLOAT32) /*sensor_msgs::PointField::FLOAT32)*/ && (
tex_mesh.cloud.fields[d].name == "x" ||
tex_mesh.cloud.fields[d].name == "y" ||
tex_mesh.cloud.fields[d].name == "z"))
{
if (!v_written)
{
// write vertices beginning with v
fs << "v ";
v_written = true;
}
float value;
memcpy (&value, &tex_mesh.cloud.data[i * point_size + tex_mesh.cloud.fields[d].offset + c * sizeof (float)], sizeof (float));
fs << value;
if (++xyz == 3)
break;
fs << " ";
}
}
if (xyz != 3)
{
PCL_ERROR ("[pcl::io::saveOBJFile] Input point cloud has no XYZ data!\n");
return (-2);
}
fs << std::endl;
}
fs << "# "<< nr_points <<" vertices" << std::endl;
// // Write vertex normals
// for (int i = 0; i < nr_points; ++i)
// {
// int xyz = 0;
// // "vn" just be written one
// bool v_written = false;
// for (size_t d = 0; d < tex_mesh.cloud.fields.size (); ++d)
// {
// int count = tex_mesh.cloud.fields[d].count;
// if (count == 0)
// count = 1; // we simply cannot tolerate 0 counts (coming from older converter code)
// int c = 0;
// // adding vertex
// if ((tex_mesh.cloud.fields[d].datatype == pcl::PCLPointField::FLOAT32) && (
// tex_mesh.cloud.fields[d].name == "normal_x" ||
// tex_mesh.cloud.fields[d].name == "normal_y" ||
// tex_mesh.cloud.fields[d].name == "normal_z"))
// {
// if (!v_written)
// {
// // write vertices beginning with vn
// fs << "vn ";
// v_written = true;
// }
// float value;
// memcpy (&value, &tex_mesh.cloud.data[i * point_size + tex_mesh.cloud.fields[d].offset + c * sizeof (float)], sizeof (float));
// fs << value;
// if (++xyz == 3)
// break;
// fs << " ";
// }
// }
// if (xyz != 3)
// {
// //PCL_ERROR ("[pcl::io::saveOBJFile] Input point cloud has no normals!\n");
// //return (-2);
// }
// fs << std::endl;
// }
// Write vertex texture with "vt" (adding latter)
for (int m = 0; m < nr_meshes; ++m)
{
if(tex_mesh.tex_coordinates.size() == 0)
continue;
//PCL_INFO ("%d vertex textures in submesh %d\n", tex_mesh.tex_coordinates[m].size (), m);
fs << "# " << tex_mesh.tex_coordinates[m].size() << " vertex textures in submesh " << m << std::endl;
for (size_t i = 0; i < tex_mesh.tex_coordinates[m].size (); ++i)
{
fs << "vt ";
fs << tex_mesh.tex_coordinates[m][i][0] << " " << tex_mesh.tex_coordinates[m][i][1] << std::endl;
}
}
int f_idx = 0;
// int idx_vt =0;
//PCL_INFO ("Writting faces...\n");
for (int m = 0; m < nr_meshes; ++m)
{
if (m > 0)
f_idx += tex_mesh.tex_polygons[m-1].size ();
if(tex_mesh.tex_materials.size() !=0)
{
fs << "# The material will be used for mesh " << m << std::endl;
//TODO pbl here with multi texture and unseen faces
fs << "usemtl " << tex_mesh.tex_materials[m].tex_name << std::endl;
fs << "# Faces" << std::endl;
}
for (size_t i = 0; i < tex_mesh.tex_polygons[m].size(); ++i)
{
// Write faces with "f"
fs << "f";
size_t j = 0;
// There's one UV per vertex per face, i.e., the same vertex can have
// different UV depending on the face.
for (j = 0; j < tex_mesh.tex_polygons[m][i].vertices.size (); ++j)
{
unsigned int idx = tex_mesh.tex_polygons[m][i].vertices[j] + 1;
fs << " " << idx
<< "/" << 3*(i+f_idx) +j+1;
//<< "/" << idx; // vertex index in obj file format starting with 1
}
fs << std::endl;
}
//PCL_INFO ("%d faces in mesh %d \n", tex_mesh.tex_polygons[m].size () , m);
fs << "# "<< tex_mesh.tex_polygons[m].size() << " faces in mesh " << m << std::endl;
}
fs << "# End of File";
// Close obj file
//PCL_INFO ("Closing obj file\n");
fs.close ();
/* Write material defination for OBJ file*/
// Open file
//PCL_INFO ("Writing material files\n");
//dont do it if no material to write
if(tex_mesh.tex_materials.size() ==0)
return (0);
std::ofstream m_fs;
m_fs.precision (precision);
m_fs.open (mtl_file_name.c_str ());
//std::cout << "MTL file is located at_ " << mtl_file_name << std::endl;
// default
m_fs << "#" << std::endl;
m_fs << "# Wavefront material file" << std::endl;
m_fs << "#" << std::endl;
for(int m = 0; m < nr_meshes; ++m)
{
m_fs << "newmtl " << tex_mesh.tex_materials[m].tex_name << std::endl;
m_fs << "Ka "<< tex_mesh.tex_materials[m].tex_Ka.r << " " << tex_mesh.tex_materials[m].tex_Ka.g << " " << tex_mesh.tex_materials[m].tex_Ka.b << std::endl; // defines the ambient color of the material to be (r,g,b).
m_fs << "Kd "<< tex_mesh.tex_materials[m].tex_Kd.r << " " << tex_mesh.tex_materials[m].tex_Kd.g << " " << tex_mesh.tex_materials[m].tex_Kd.b << std::endl; // defines the diffuse color of the material to be (r,g,b).
m_fs << "Ks "<< tex_mesh.tex_materials[m].tex_Ks.r << " " << tex_mesh.tex_materials[m].tex_Ks.g << " " << tex_mesh.tex_materials[m].tex_Ks.b << std::endl; // defines the specular color of the material to be (r,g,b). This color shows up in highlights.
m_fs << "d " << tex_mesh.tex_materials[m].tex_d << std::endl; // defines the transparency of the material to be alpha.
m_fs << "Ns "<< tex_mesh.tex_materials[m].tex_Ns << std::endl; // defines the shininess of the material to be s.
m_fs << "illum "<< tex_mesh.tex_materials[m].tex_illum << std::endl; // denotes the illumination model used by the material.
// illum = 1 indicates a flat material with no specular highlights, so the value of Ks is not used.
// illum = 2 denotes the presence of specular highlights, and so a specification for Ks is required.
m_fs << "map_Kd " << tex_mesh.tex_materials[m].tex_file << std::endl;
m_fs << "###" << std::endl;
}
m_fs.close ();
return (0);
}
bool getPixelCoordinates(const pcl::PointXYZ &pt, const pcl::TextureMapping<pcl::PointXYZ>::Camera &cam, pcl::PointXY &UV_coordinates)
{
if (pt.z > 0)
{
// compute image center and dimension
double sizeX = cam.width;
double sizeY = cam.height;
double cx, cy;
if (cam.center_w > 0)
cx = cam.center_w;
else
cx = sizeX / 2.0;
if (cam.center_h > 0)
cy = cam.center_h;
else
cy = sizeY / 2.0;
double focal_x, focal_y;
if (cam.focal_length_w > 0)
focal_x = cam.focal_length_w;
else
focal_x = cam.focal_length;
if (cam.focal_length_h > 0)
focal_y = cam.focal_length_h;
else
focal_y = cam.focal_length;
// project point on camera's image plane
UV_coordinates.x = static_cast<float> ((focal_x * (pt.x / pt.z) + cx)); //horizontal
UV_coordinates.y = static_cast<float> ((focal_y * (pt.y / pt.z) + cy)); //vertical
// point is visible!
if (UV_coordinates.x >= 1.0 && UV_coordinates.x <= (sizeX - 1.0) && UV_coordinates.y >= 1.0 && UV_coordinates.y <= (sizeY - 1.0))
{
return (true); // point was visible by the camera
}
}
// point is NOT visible by the camera
UV_coordinates.x = -1.0f;
UV_coordinates.y = -1.0f;
return (false); // point was not visible by the camera
}
bool isFaceProjected (const pcl::TextureMapping<pcl::PointXYZ>::Camera &camera, const pcl::PointXYZ &p1, const pcl::PointXYZ &p2, const pcl::PointXYZ &p3, pcl::PointXY &proj1, pcl::PointXY &proj2, pcl::PointXY &proj3)
{
return (getPixelCoordinates(p1, camera, proj1) && getPixelCoordinates(p2, camera, proj2) && getPixelCoordinates(p3, camera, proj3));
}
void getTriangleCircumscribedCircleCentroid( const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, pcl::PointXY &circumcenter, double &radius)
{
// compute centroid's coordinates (translate back to original coordinates)
circumcenter.x = static_cast<float> (p1.x + p2.x + p3.x ) / 3;
circumcenter.y = static_cast<float> (p1.y + p2.y + p3.y ) / 3;
double r1 = (circumcenter.x - p1.x) * (circumcenter.x - p1.x) + (circumcenter.y - p1.y) * (circumcenter.y - p1.y) ;
double r2 = (circumcenter.x - p2.x) * (circumcenter.x - p2.x) + (circumcenter.y - p2.y) * (circumcenter.y - p2.y) ;
double r3 = (circumcenter.x - p3.x) * (circumcenter.x - p3.x) + (circumcenter.y - p3.y) * (circumcenter.y - p3.y) ;
// radius
radius = std::sqrt( std::max( r1, std::max( r2, r3) )) ;
}
bool checkPointInsideTriangle(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, const pcl::PointXY &pt)
{
// Compute vectors
Eigen::Vector2d v0, v1, v2;
v0(0) = p3.x - p1.x; v0(1) = p3.y - p1.y; // v0= C - A
v1(0) = p2.x - p1.x; v1(1) = p2.y - p1.y; // v1= B - A
v2(0) = pt.x - p1.x; v2(1) = pt.y - p1.y; // v2= P - A
// Compute dot products
double dot00 = v0.dot(v0); // dot00 = dot(v0, v0)
double dot01 = v0.dot(v1); // dot01 = dot(v0, v1)
double dot02 = v0.dot(v2); // dot02 = dot(v0, v2)
double dot11 = v1.dot(v1); // dot11 = dot(v1, v1)
double dot12 = v1.dot(v2); // dot12 = dot(v1, v2)
// Compute barycentric coordinates
double invDenom = 1.0 / (dot00*dot11 - dot01*dot01);
double u = (dot11*dot02 - dot01*dot12) * invDenom;
double v = (dot00*dot12 - dot01*dot02) * invDenom;
// Check if point is in triangle
return ((u >= 0) && (v >= 0) && (u + v < 1));
}