#!/usr/bin/env python # -*- coding: utf-8 -*- # ****************************************************************************** # $Id$ # # Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) # Support: BRGM (http://www.brgm.fr) # Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. # - generate Google Earth metadata (KML SuperOverlay) # - generate simple HTML viewer based on Google Maps and OpenLayers # - support of global tiles (Spherical Mercator) for compatibility # with interactive web maps a la Google Maps # Author: Klokan Petr Pridal, klokan at klokan dot cz # Web: http://www.klokan.cz/projects/gdal2tiles/ # GUI: http://www.maptiler.org/ # ############################################################################### # Copyright (c) 2008, Klokan Petr Pridal # Copyright (c) 2010-2013, Even Rouault # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ****************************************************************************** from __future__ import print_function, division import math from multiprocessing import Pipe, Pool, Process, Manager import os import tempfile import shutil import sys from uuid import uuid4 from xml.etree import ElementTree from osgeo import gdal from osgeo import osr try: from PIL import Image import numpy import osgeo.gdal_array as gdalarray except Exception: # 'antialias' resampling is not available pass __version__ = "$Id$" resampling_list = ('average', 'near', 'bilinear', 'cubic', 'cubicspline', 'lanczos', 'antialias') profile_list = ('mercator', 'geodetic', 'raster') webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'none') # ============================================================================= # ============================================================================= # ============================================================================= __doc__globalmaptiles = """ globalmaptiles.py Global Map Tiles as defined in Tile Map Service (TMS) Profiles ============================================================== Functions necessary for generation of global tiles used on the web. It contains classes implementing coordinate conversions for: - GlobalMercator (based on EPSG:3857) for Google Maps, Yahoo Maps, Bing Maps compatible tiles - GlobalGeodetic (based on EPSG:4326) for OpenLayers Base Map and Google Earth compatible tiles More info at: http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation http://msdn.microsoft.com/en-us/library/bb259689.aspx http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates Created by Klokan Petr Pridal on 2008-07-03. Google Summer of Code 2008, project GDAL2Tiles for OSGEO. In case you use this class in your product, translate it to another language or find it useful for your project please let me know. My email: klokan at klokan dot cz. I would like to know where it was used. Class is available under the open-source GDAL license (www.gdal.org). """ MAXZOOMLEVEL = 32 class GlobalMercator(object): r""" TMS Global Mercator Profile --------------------------- Functions necessary for generation of tiles in Spherical Mercator projection, EPSG:3857. Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, UK Ordnance Survey OpenSpace API, ... and you can overlay them on top of base maps of those web mapping applications. Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). What coordinate conversions do we need for TMS Global Mercator tiles:: LatLon <-> Meters <-> Pixels <-> Tile WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid lat/lon XY in meters XY pixels Z zoom XYZ from TMS EPSG:4326 EPSG:387 .----. --------- -- TMS / \ <-> | | <-> /----/ <-> Google \ / | | /--------/ QuadTree ----- --------- /------------/ KML, public WebMapService Web Clients TileMapService What is the coordinate extent of Earth in EPSG:3857? [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244] Constant 20037508.342789244 comes from the circumference of the Earth in meters, which is 40 thousand kilometers, the coordinate origin is in the middle of extent. In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, every lower zoom level resolution is always divided by two initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 What is the difference between TMS and Google Maps/QuadTree tile name convention? The tile raster itself is the same (equal extent, projection, pixel size), there is just different identification of the same raster tile. Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. Google placed the origin [0,0] to the top-left corner, reference is XYZ. Microsoft is referencing tiles by a QuadTree name, defined on the website: http://msdn2.microsoft.com/en-us/library/bb259689.aspx The lat/lon coordinates are using WGS84 datum, yes? Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. Well, the web clients like Google Maps are projecting those coordinates by Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if the were on the WGS84 ellipsoid. From MSDN documentation: To simplify the calculations, we use the spherical form of projection, not the ellipsoidal form. Since the projection is used only for map display, and not for displaying numeric coordinates, we don't need the extra precision of an ellipsoidal projection. The spherical projection causes approximately 0.33 percent scale distortion in the Y direction, which is not visually noticeable. How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. All of the tools supports -t_srs 'epsg:3857'. For other GIS programs check the exact definition of the projection: More info at http://spatialreference.org/ref/user/google-projection/ The same projection is designated as EPSG:3857. WKT definition is in the official EPSG database. Proj4 Text: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs Human readable WKT format of EPSG:3857: PROJCS["Google Maps Global Mercator", GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433], AUTHORITY["EPSG","4326"]], PROJECTION["Mercator_1SP"], PARAMETER["central_meridian",0], PARAMETER["scale_factor",1], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["metre",1, AUTHORITY["EPSG","9001"]]] """ def __init__(self, tileSize=256): "Initialize the TMS Global Mercator pyramid" self.tileSize = tileSize self.initialResolution = 2 * math.pi * 6378137 / self.tileSize # 156543.03392804062 for tileSize 256 pixels self.originShift = 2 * math.pi * 6378137 / 2.0 # 20037508.342789244 def LatLonToMeters(self, lat, lon): "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" mx = lon * self.originShift / 180.0 my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / (math.pi / 180.0) my = my * self.originShift / 180.0 return mx, my def MetersToLatLon(self, mx, my): "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" lon = (mx / self.originShift) * 180.0 lat = (my / self.originShift) * 180.0 lat = 180 / math.pi * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) return lat, lon def PixelsToMeters(self, px, py, zoom): "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" res = self.Resolution(zoom) mx = px * res - self.originShift my = py * res - self.originShift return mx, my def MetersToPixels(self, mx, my, zoom): "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" res = self.Resolution(zoom) px = (mx + self.originShift) / res py = (my + self.originShift) / res return px, py def PixelsToTile(self, px, py): "Returns a tile covering region in given pixel coordinates" tx = int(math.ceil(px / float(self.tileSize)) - 1) ty = int(math.ceil(py / float(self.tileSize)) - 1) return tx, ty def PixelsToRaster(self, px, py, zoom): "Move the origin of pixel coordinates to top-left corner" mapSize = self.tileSize << zoom return px, mapSize - py def MetersToTile(self, mx, my, zoom): "Returns tile for given mercator coordinates" px, py = self.MetersToPixels(mx, my, zoom) return self.PixelsToTile(px, py) def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile in EPSG:3857 coordinates" minx, miny = self.PixelsToMeters(tx*self.tileSize, ty*self.tileSize, zoom) maxx, maxy = self.PixelsToMeters((tx+1)*self.tileSize, (ty+1)*self.tileSize, zoom) return (minx, miny, maxx, maxy) def TileLatLonBounds(self, tx, ty, zoom): "Returns bounds of the given tile in latitude/longitude using WGS84 datum" bounds = self.TileBounds(tx, ty, zoom) minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) return (minLat, minLon, maxLat, maxLon) def Resolution(self, zoom): "Resolution (meters/pixel) for given zoom level (measured at Equator)" # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom) return self.initialResolution / (2**zoom) def ZoomForPixelSize(self, pixelSize): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): if i != -1: return i-1 else: return 0 # We don't want to scale up def GoogleTile(self, tx, ty, zoom): "Converts TMS tile coordinates to Google Tile coordinates" # coordinate origin is moved from bottom-left to top-left corner of the extent return tx, (2**zoom - 1) - ty def QuadTree(self, tx, ty, zoom): "Converts TMS tile coordinates to Microsoft QuadTree" quadKey = "" ty = (2**zoom - 1) - ty for i in range(zoom, 0, -1): digit = 0 mask = 1 << (i-1) if (tx & mask) != 0: digit += 1 if (ty & mask) != 0: digit += 2 quadKey += str(digit) return quadKey class GlobalGeodetic(object): r""" TMS Global Geodetic Profile --------------------------- Functions necessary for generation of global tiles in Plate Carre projection, EPSG:4326, "unprojected profile". Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) and you can overlay the tiles on top of OpenLayers base map. Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). What coordinate conversions do we need for TMS Global Geodetic tiles? Global Geodetic tiles are using geodetic coordinates (latitude,longitude) directly as planar coordinates XY (it is also called Unprojected or Plate Carre). We need only scaling to pixel pyramid and cutting to tiles. Pyramid has on top level two tiles, so it is not square but rectangle. Area [-180,-90,180,90] is scaled to 512x256 pixels. TMS has coordinate origin (for pixels and tiles) in bottom-left corner. Rasters are in EPSG:4326 and therefore are compatible with Google Earth. LatLon <-> Pixels <-> Tiles WGS84 coordinates Pixels in pyramid Tiles in pyramid lat/lon XY pixels Z zoom XYZ from TMS EPSG:4326 .----. ---- / \ <-> /--------/ <-> TMS \ / /--------------/ ----- /--------------------/ WMS, KML Web Clients, Google Earth TileMapService """ def __init__(self, tmscompatible, tileSize=256): self.tileSize = tileSize if tmscompatible is not None: # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) # Adhers to OSGeo TMS spec # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic self.resFact = 180.0 / self.tileSize else: # Defaults the resolution factor to 1.40625 (1 tile @ level 0) # Adheres OpenLayers, MapProxy, etc default resolution for WMTS self.resFact = 360.0 / self.tileSize def LonLatToPixels(self, lon, lat, zoom): "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" res = self.resFact / 2**zoom px = (180 + lon) / res py = (90 + lat) / res return px, py def PixelsToTile(self, px, py): "Returns coordinates of the tile covering region in pixel coordinates" tx = int(math.ceil(px / float(self.tileSize)) - 1) ty = int(math.ceil(py / float(self.tileSize)) - 1) return tx, ty def LonLatToTile(self, lon, lat, zoom): "Returns the tile for zoom which covers given lon/lat coordinates" px, py = self.LonLatToPixels(lon, lat, zoom) return self.PixelsToTile(px, py) def Resolution(self, zoom): "Resolution (arc/pixel) for given zoom level (measured at Equator)" return self.resFact / 2**zoom def ZoomForPixelSize(self, pixelSize): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): if i != 0: return i-1 else: return 0 # We don't want to scale up def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile" res = self.resFact / 2**zoom return ( tx*self.tileSize*res - 180, ty*self.tileSize*res - 90, (tx+1)*self.tileSize*res - 180, (ty+1)*self.tileSize*res - 90 ) def TileLatLonBounds(self, tx, ty, zoom): "Returns bounds of the given tile in the SWNE form" b = self.TileBounds(tx, ty, zoom) return (b[1], b[0], b[3], b[2]) class Zoomify(object): """ Tiles compatible with the Zoomify viewer ---------------------------------------- """ def __init__(self, width, height, tilesize=256, tileformat='jpg'): """Initialization of the Zoomify tile tree""" self.tilesize = tilesize self.tileformat = tileformat imagesize = (width, height) tiles = (math.ceil(width / tilesize), math.ceil(height / tilesize)) # Size (in tiles) for each tier of pyramid. self.tierSizeInTiles = [] self.tierSizeInTiles.append(tiles) # Image size in pixels for each pyramid tierself self.tierImageSize = [] self.tierImageSize.append(imagesize) while (imagesize[0] > tilesize or imagesize[1] > tilesize): imagesize = (math.floor(imagesize[0] / 2), math.floor(imagesize[1] / 2)) tiles = (math.ceil(imagesize[0] / tilesize), math.ceil(imagesize[1] / tilesize)) self.tierSizeInTiles.append(tiles) self.tierImageSize.append(imagesize) self.tierSizeInTiles.reverse() self.tierImageSize.reverse() # Depth of the Zoomify pyramid, number of tiers (zoom levels) self.numberOfTiers = len(self.tierSizeInTiles) # Number of tiles up to the given tier of pyramid. self.tileCountUpToTier = [] self.tileCountUpToTier[0] = 0 for i in range(1, self.numberOfTiers+1): self.tileCountUpToTier.append( self.tierSizeInTiles[i-1][0] * self.tierSizeInTiles[i-1][1] + self.tileCountUpToTier[i-1] ) def tilefilename(self, x, y, z): """Returns filename for tile with given coordinates""" tileIndex = x + y * self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256), "%s-%s-%s.%s" % (z, x, y, self.tileformat)) class GDALError(Exception): pass import os main_pid = os.getpid() def exit_with_error(message, details=""): # Message printing and exit code kept from the way it worked using the OptionParser (in case # someone parses the error output) sys.stderr.write("Usage: gdal2tiles.py [options] input_file [output]\n\n") sys.stderr.write("gdal2tiles.py: error: %s\n" % message) if details: sys.stderr.write("\n\n%s\n" % details) import signal os.kill(main_pid, signal.SIGINT) sys.exit(2) def generate_kml(tx, ty, tz, tileext, tilesize, tileswne, options, children=None, **args): """ Template for the KML. Returns filled string. """ if not children: children = [] args['tx'], args['ty'], args['tz'] = tx, ty, tz args['tileformat'] = tileext if 'tilesize' not in args: args['tilesize'] = tilesize if 'minlodpixels' not in args: args['minlodpixels'] = int(args['tilesize'] / 2) if 'maxlodpixels' not in args: args['maxlodpixels'] = int(args['tilesize'] * 8) if children == []: args['maxlodpixels'] = -1 if tx is None: tilekml = False args['title'] = options.title else: tilekml = True args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) args['south'], args['west'], args['north'], args['east'] = tileswne(tx, ty, tz) if tx == 0: args['drawOrder'] = 2 * tz + 1 elif tx is not None: args['drawOrder'] = 2 * tz else: args['drawOrder'] = 0 url = options.url if not url: if tilekml: url = "../../" else: url = "" s = """ %(title)s """ % args if tilekml: s += """ %(north).14f %(south).14f %(east).14f %(west).14f %(minlodpixels)d %(maxlodpixels)d %(drawOrder)d %(ty)d.%(tileformat)s %(north).14f %(south).14f %(east).14f %(west).14f """ % args for cx, cy, cz in children: csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) s += """ %d/%d/%d.%s %.14f %.14f %.14f %.14f %d -1 %s%d/%d/%d.kml onRegion """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, args['minlodpixels'], url, cz, cx, cy) s += """ """ return s def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''): """Scales down query dataset to the tile dataset""" querysize = dsquery.RasterXSize tilesize = dstile.RasterXSize tilebands = dstile.RasterCount if options.resampling == 'average': # Function: gdal.RegenerateOverview() for i in range(1, tilebands+1): # Black border around NODATA res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), 'average') if res != 0: exit_with_error("RegenerateOverview() failed on %s, error %d" % ( tilefilename, res)) elif options.resampling == 'antialias': # Scaling by PIL (Python Imaging Library) - improved Lanczos array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) for i in range(tilebands): array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), 0, 0, querysize, querysize) im = Image.fromarray(array, 'RGBA') # Always four bands im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) if os.path.exists(tilefilename): im0 = Image.open(tilefilename) im1 = Image.composite(im1, im0, im1) im1.save(tilefilename, tiledriver) else: if options.resampling == 'near': gdal_resampling = gdal.GRA_NearestNeighbour elif options.resampling == 'bilinear': gdal_resampling = gdal.GRA_Bilinear elif options.resampling == 'cubic': gdal_resampling = gdal.GRA_Cubic elif options.resampling == 'cubicspline': gdal_resampling = gdal.GRA_CubicSpline elif options.resampling == 'lanczos': gdal_resampling = gdal.GRA_Lanczos # Other algorithms are implemented by gdal.ReprojectImage(). dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize))) dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) if res != 0: exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) def setup_no_data_values(input_dataset, options): """ Extract the NODATA values from the dataset or use the passed arguments as override if any """ in_nodata = [] if options.srcnodata: nds = list(map(float, options.srcnodata.split(','))) if len(nds) < input_dataset.RasterCount: in_nodata = (nds * input_dataset.RasterCount)[:input_dataset.RasterCount] else: in_nodata = nds else: for i in range(1, input_dataset.RasterCount+1): raster_no_data = input_dataset.GetRasterBand(i).GetNoDataValue() if raster_no_data is not None: in_nodata.append(raster_no_data) if options.verbose: print("NODATA: %s" % in_nodata) return in_nodata def setup_input_srs(input_dataset, options): """ Determines and returns the Input Spatial Reference System (SRS) as an osr object and as a WKT representation Uses in priority the one passed in the command line arguments. If None, tries to extract them from the input dataset """ input_srs = None input_srs_wkt = None if options.s_srs: input_srs = osr.SpatialReference() input_srs.SetFromUserInput(options.s_srs) input_srs_wkt = input_srs.ExportToWkt() else: input_srs_wkt = input_dataset.GetProjection() if not input_srs_wkt and input_dataset.GetGCPCount() != 0: input_srs_wkt = input_dataset.GetGCPProjection() if input_srs_wkt: input_srs = osr.SpatialReference() input_srs.ImportFromWkt(input_srs_wkt) return input_srs, input_srs_wkt def setup_output_srs(input_srs, options): """ Setup the desired SRS (based on options) """ output_srs = osr.SpatialReference() if options.profile == 'mercator': output_srs.ImportFromEPSG(3857) elif options.profile == 'geodetic': output_srs.ImportFromEPSG(4326) else: output_srs = input_srs return output_srs def has_georeference(dataset): return (dataset.GetGeoTransform() != (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) or dataset.GetGCPCount() != 0) def reproject_dataset(from_dataset, from_srs, to_srs, options=None): """ Returns the input dataset in the expected "destination" SRS. If the dataset is already in the correct SRS, returns it unmodified """ if not from_srs or not to_srs: raise GDALError("from and to SRS must be defined to reproject the dataset") if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or (from_dataset.GetGCPCount() != 0): to_dataset = gdal.AutoCreateWarpedVRT(from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt()) if options and options.verbose: print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')") to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) return to_dataset else: return from_dataset def add_gdal_warp_options_to_string(vrt_string, warp_options): if not warp_options: return vrt_string vrt_root = ElementTree.fromstring(vrt_string) options = vrt_root.find("GDALWarpOptions") if options is None: return vrt_string for key, value in warp_options.items(): tb = ElementTree.TreeBuilder() tb.start("Option", {"name": key}) tb.data(value) tb.end("Option") elem = tb.close() options.insert(0, elem) return ElementTree.tostring(vrt_root).decode() def update_no_data_values(warped_vrt_dataset, nodata_values, options=None): """ Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed """ # TODO: gbataille - Seems that I forgot tests there if nodata_values != []: temp_file = gettempfilename('-gdal2tiles.vrt') warped_vrt_dataset.GetDriver().CreateCopy(temp_file, warped_vrt_dataset) with open(temp_file, 'r') as f: vrt_string = f.read() vrt_string = add_gdal_warp_options_to_string( vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"}) # TODO: gbataille - check the need for this replacement. Seems to work without # # replace BandMapping tag for NODATA bands.... # for i in range(len(nodata_values)): # s = s.replace( # '' % ((i+1), (i+1)), # """ # # %i # 0 # %i # 0 # # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) # save the corrected VRT with open(temp_file, 'w') as f: f.write(vrt_string) corrected_dataset = gdal.Open(temp_file) os.unlink(temp_file) # set NODATA_VALUE metadata corrected_dataset.SetMetadataItem( 'NODATA_VALUES', ' '.join([str(i) for i in nodata_values])) if options and options.verbose: print("Modified warping result saved into 'tiles1.vrt'") # TODO: gbataille - test replacing that with a gdal write of the dataset (more # accurately what's used, even if should be the same with open("tiles1.vrt", "w") as f: f.write(vrt_string) return corrected_dataset def add_alpha_band_to_string_vrt(vrt_string): # TODO: gbataille - Old code speak of this being equivalent to gdalwarp -dstalpha # To be checked vrt_root = ElementTree.fromstring(vrt_string) index = 0 nb_bands = 0 for subelem in list(vrt_root): if subelem.tag == "VRTRasterBand": nb_bands += 1 color_node = subelem.find("./ColorInterp") if color_node is not None and color_node.text == "Alpha": raise Exception("Alpha band already present") else: if nb_bands: # This means that we are one element after the Band definitions break index += 1 tb = ElementTree.TreeBuilder() tb.start("VRTRasterBand", {'dataType': "Byte", "band": str(nb_bands + 1), "subClass": "VRTWarpedRasterBand"}) tb.start("ColorInterp", {}) tb.data("Alpha") tb.end("ColorInterp") tb.end("VRTRasterBand") elem = tb.close() vrt_root.insert(index, elem) warp_options = vrt_root.find(".//GDALWarpOptions") tb = ElementTree.TreeBuilder() tb.start("DstAlphaBand", {}) tb.data(str(nb_bands + 1)) tb.end("DstAlphaBand") elem = tb.close() warp_options.append(elem) # TODO: gbataille - this is a GDALWarpOptions. Why put it in a specific place? tb = ElementTree.TreeBuilder() tb.start("Option", {"name": "INIT_DEST"}) tb.data("0") tb.end("Option") elem = tb.close() warp_options.append(elem) return ElementTree.tostring(vrt_root).decode() def update_alpha_value_for_non_alpha_inputs(warped_vrt_dataset, options=None): """ Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has not been forced by options """ if warped_vrt_dataset.RasterCount in [1, 3]: tempfilename = gettempfilename('-gdal2tiles.vrt') warped_vrt_dataset.GetDriver().CreateCopy(tempfilename, warped_vrt_dataset) with open(tempfilename) as f: orig_data = f.read() alpha_data = add_alpha_band_to_string_vrt(orig_data) with open(tempfilename, 'w') as f: f.write(alpha_data) warped_vrt_dataset = gdal.Open(tempfilename) os.unlink(tempfilename) if options and options.verbose: print("Modified -dstalpha warping result saved into 'tiles1.vrt'") # TODO: gbataille - test replacing that with a gdal write of the dataset (more # accurately what's used, even if should be the same with open("tiles1.vrt", "w") as f: f.write(alpha_data) return warped_vrt_dataset def nb_data_bands(dataset): """ Return the number of data (non-alpha) bands of a gdal dataset """ alphaband = dataset.GetRasterBand(1).GetMaskBand() if ((alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or dataset.RasterCount == 4 or dataset.RasterCount == 2): return dataset.RasterCount - 1 else: return dataset.RasterCount def gettempfilename(suffix): """Returns a temporary filename""" if '_' in os.environ: # tempfile.mktemp() crashes on some Wine versions (the one of Ubuntu 12.04 particularly) if os.environ['_'].find('wine') >= 0: tmpdir = '.' if 'TMP' in os.environ: tmpdir = os.environ['TMP'] import time import random random.seed(time.time()) random_part = 'file%d' % random.randint(0, 1000000000) return os.path.join(tmpdir, random_part + suffix) return tempfile.mktemp(suffix) def create_base_tile(tile_job_info, tile_detail, queue=None): gdal.AllRegister() dataBandsCount = tile_job_info.nb_data_bands output = tile_job_info.output_file_path tileext = tile_job_info.tile_extension tilesize = tile_job_info.tile_size options = tile_job_info.options tilebands = dataBandsCount + 1 ds = gdal.Open(tile_job_info.src_file, gdal.GA_ReadOnly) mem_drv = gdal.GetDriverByName('MEM') out_drv = gdal.GetDriverByName(tile_job_info.tile_driver) alphaband = ds.GetRasterBand(1).GetMaskBand() tx = tile_detail.tx ty = tile_detail.ty tz = tile_detail.tz rx = tile_detail.rx ry = tile_detail.ry rxsize = tile_detail.rxsize rysize = tile_detail.rysize wx = tile_detail.wx wy = tile_detail.wy wxsize = tile_detail.wxsize wysize = tile_detail.wysize querysize = tile_detail.querysize # Tile dataset in memory tilefilename = os.path.join( output, str(tz), str(tx), "%s.%s" % (ty, tileext)) dstile = mem_drv.Create('', tilesize, tilesize, tilebands) data = alpha = None if options.verbose: print("\tReadRaster Extent: ", (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)) # Query is in 'nearest neighbour' but can be bigger in then the tilesize # We scale down the query to the tilesize by supplied algorithm. if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, band_list=list(range(1, dataBandsCount+1))) alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize) # The tile in memory is a transparent file by default. Write pixel values into it if # any if data: if tilesize == querysize: # Use the ReadRaster result directly in tiles ('nearest neighbour' query) dstile.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1, dataBandsCount+1))) dstile.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, # MrSID) the ReadRaster function returns high-quality raster (not ugly # nearest neighbour) # TODO: Use directly 'near' for WaveLet files else: # Big ReadRaster query in memory scaled to the tilesize - all but 'near' # algo dsquery = mem_drv.Create('', querysize, querysize, tilebands) # TODO: fill the null value in case a tile without alpha is produced (now # only png tiles are supported) dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1, dataBandsCount+1))) dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) scale_query_to_tile(dsquery, dstile, tile_job_info.tile_driver, options, tilefilename=tilefilename) del dsquery # Force freeing the memory to make sure the C++ destructor is called and the memory as well as # the file locks are released del ds del data if options.resampling != 'antialias': # Write a copy of tile to png/jpg out_drv.CreateCopy(tilefilename, dstile, strict=0) del dstile # Create a KML file for this tile. if tile_job_info.kml: kmlfilename = os.path.join(output, str(tz), str(tx), '%d.kml' % ty) if not options.resume or not os.path.exists(kmlfilename): with open(kmlfilename, 'wb') as f: f.write(generate_kml( tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size, tile_job_info.tile_swne, tile_job_info.options ).encode('utf-8')) if queue: queue.put("tile %s %s %s" % (tx, ty, tz)) def create_overview_tiles(tile_job_info, output_folder, options): """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" mem_driver = gdal.GetDriverByName('MEM') tile_driver = tile_job_info.tile_driver out_driver = gdal.GetDriverByName(tile_driver) tilebands = tile_job_info.nb_data_bands + 1 # Usage of existing tiles: from 4 underlying tiles generate one as overview. tcount = 0 for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] tcount += (1 + abs(tmaxx-tminx)) * (1 + abs(tmaxy-tminy)) ti = 0 if tcount == 0: return if not options.quiet: print("Generating Overview Tiles:") progress_bar = ProgressBar(tcount) progress_bar.start() for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 tilefilename = os.path.join(output_folder, str(tz), str(tx), "%s.%s" % (ty, tile_job_info.tile_extension)) if options.verbose: print(ti, '/', tcount, tilefilename) if options.resume and os.path.exists(tilefilename): if options.verbose: print("Tile generation skipped because of --resume") else: progress_bar.log_progress() continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) dsquery = mem_driver.Create('', 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands) # TODO: fill the null value dstile = mem_driver.Create('', tile_job_info.tile_size, tile_job_info.tile_size, tilebands) # TODO: Implement more clever walking on the tiles with cache functionality # probably walk should start with reading of four tiles from top left corner # Hilbert curve children = [] # Read the tiles and write them to query window for y in range(2 * ty, 2 * ty + 2): for x in range(2 * tx, 2 * tx + 2): minx, miny, maxx, maxy = tile_job_info.tminmax[tz + 1] if x >= minx and x <= maxx and y >= miny and y <= maxy: dsquerytile = gdal.Open( os.path.join(output_folder, str(tz + 1), str(x), "%s.%s" % (y, tile_job_info.tile_extension)), gdal.GA_ReadOnly) if (ty == 0 and y == 1) or (ty != 0 and (y % (2 * ty)) != 0): tileposy = 0 else: tileposy = tile_job_info.tile_size if tx: tileposx = x % (2 * tx) * tile_job_info.tile_size elif tx == 0 and x == 1: tileposx = tile_job_info.tile_size else: tileposx = 0 dsquery.WriteRaster( tileposx, tileposy, tile_job_info.tile_size, tile_job_info.tile_size, dsquerytile.ReadRaster(0, 0, tile_job_info.tile_size, tile_job_info.tile_size), band_list=list(range(1, tilebands + 1))) children.append([x, y, tz + 1]) scale_query_to_tile(dsquery, dstile, tile_driver, options, tilefilename=tilefilename) # Write a copy of tile to png/jpg if options.resampling != 'antialias': # Write a copy of tile to png/jpg out_driver.CreateCopy(tilefilename, dstile, strict=0) if options.verbose: print("\tbuild from zoom", tz + 1, " tiles:", (2 * tx, 2 * ty), (2 * tx + 1, 2 * ty), (2 * tx, 2 * ty + 1), (2 * tx + 1, 2 * ty + 1)) # Create a KML file for this tile. if tile_job_info.kml: with open(os.path.join( output_folder, '%d/%d/%d.kml' % (tz, tx, ty) ), 'wb') as f: f.write(generate_kml( tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size, get_tile_swne(tile_job_info, options), options, children ).encode('utf-8')) if not options.verbose and not options.quiet: progress_bar.log_progress() def optparse_init(): """Prepare the option parser for input (argv)""" from optparse import OptionParser, OptionGroup usage = "Usage: %prog [options] input_file [output]" p = OptionParser(usage, version="%prog " + __version__) p.add_option("-p", "--profile", dest='profile', type='choice', choices=profile_list, help=("Tile cutting profile (%s) - default 'mercator' " "(Google Maps compatible)" % ",".join(profile_list))) p.add_option("-r", "--resampling", dest="resampling", type='choice', choices=resampling_list, help="Resampling method (%s) - default 'average'" % ",".join(resampling_list)) p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS", help="The spatial reference system used for the source input data") p.add_option('-z', '--zoom', dest="zoom", help="Zoom levels to render (format:'2-5' or '10').") p.add_option('-e', '--resume', dest="resume", action="store_true", help="Resume mode. Generate only missing files.") p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA", help="NODATA transparency value to assign to the input data") p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true", help=("When using the geodetic profile, specifies the base resolution " "as 0.703125 or 2 tiles at zoom level 0.")) p.add_option("-v", "--verbose", action="store_true", dest="verbose", help="Print status messages to stdout") p.add_option("-q", "--quiet", action="store_true", dest="quiet", help="Disable messages and status to stdout") p.add_option("--processes", dest="nb_processes", type='int', help="Number of processes to use for tiling") # KML options g = OptionGroup(p, "KML (Google Earth) options", "Options for generated Google Earth SuperOverlay metadata") g.add_option("-k", "--force-kml", dest='kml', action="store_true", help=("Generate KML for Google Earth - default for 'geodetic' profile and " "'raster' in EPSG:4326. For a dataset with different projection use " "with caution!")) g.add_option("-n", "--no-kml", dest='kml', action="store_false", help="Avoid automatic generation of KML files for EPSG:4326") g.add_option("-u", "--url", dest='url', help="URL address where the generated tiles are going to be published") p.add_option_group(g) # HTML options g = OptionGroup(p, "Web viewer options", "Options for generated HTML viewers a la Google Maps") g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list, help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list)) g.add_option("-t", "--title", dest='title', help="Title of the map") g.add_option("-c", "--copyright", dest='copyright', help="Copyright for the map") g.add_option("-g", "--googlekey", dest='googlekey', help="Google Maps API key from http://code.google.com/apis/maps/signup.html") g.add_option("-b", "--bingkey", dest='bingkey', help="Bing Maps API key from https://www.bingmapsportal.com/") p.add_option_group(g) p.set_defaults(verbose=False, profile="mercator", kml=False, url='', webviewer='all', copyright='', resampling='average', resume=False, googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE', processes=1) return p def process_args(argv): parser = optparse_init() options, args = parser.parse_args(args=argv) # Args should be either an input file OR an input file and an output folder if (len(args) == 0): exit_with_error("You need to specify at least an input file as argument to the script") if (len(args) > 2): exit_with_error("Processing of several input files is not supported.", "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(args)) input_file = args[0] if not os.path.isfile(input_file): exit_with_error("The provided input file %s does not exist or is not a file" % input_file) if len(args) == 2: output_folder = args[1] else: output_folder = os.path.basename(input_file) options = options_post_processing(options, input_file, output_folder) return input_file, output_folder, options def options_post_processing(options, input_file, output_folder): if not options.title: options.title = os.path.basename(input_file) if options.url and not options.url.endswith('/'): options.url += '/' if options.url: out_path = output_folder if out_path.endswith("/"): out_path = out_path[:-1] options.url += os.path.basename(out_path) + '/' # Supported options if options.resampling == 'average': try: if gdal.RegenerateOverview: pass except Exception: exit_with_error("'average' resampling algorithm is not available.", "Please use -r 'near' argument or upgrade to newer version of GDAL.") elif options.resampling == 'antialias': try: if numpy: # pylint:disable=W0125 pass except Exception: exit_with_error("'antialias' resampling algorithm is not available.", "Install PIL (Python Imaging Library) and numpy.") try: os.path.basename(input_file).encode('ascii') except UnicodeEncodeError: full_ascii = False else: full_ascii = True # LC_CTYPE check if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""): if not options.quiet: print("\nWARNING: " "You are running gdal2tiles.py with a LC_CTYPE environment variable that is " "not UTF-8 compatible, and your input file contains non-ascii characters. " "The generated sample googlemaps, openlayers or " "leaflet files might contain some invalid characters as a result\n") # Output the results if options.verbose: print("Options:", options) print("Input:", input_file) print("Output:", output_folder) print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) print('') return options class TileDetail(object): tx = 0 ty = 0 tz = 0 rx = 0 ry = 0 rxsize = 0 rysize = 0 wx = 0 wy = 0 wxsize = 0 wysize = 0 querysize = 0 def __init__(self, **kwargs): for key in kwargs: if hasattr(self, key): setattr(self, key, kwargs[key]) def __unicode__(self): return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) def __str__(self): return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) def __repr__(self): return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) class TileJobInfo(object): """ Plain object to hold tile job configuration for a dataset """ src_file = "" nb_data_bands = 0 output_file_path = "" tile_extension = "" tile_size = 0 tile_driver = None kml = False tminmax = [] tminz = 0 tmaxz = 0 in_srs_wkt = 0 out_geo_trans = [] ominy = 0 is_epsg_4326 = False options = None def __init__(self, **kwargs): for key in kwargs: if hasattr(self, key): setattr(self, key, kwargs[key]) def __unicode__(self): return "TileJobInfo %s\n" % (self.src_file) def __str__(self): return "TileJobInfo %s\n" % (self.src_file) def __repr__(self): return "TileJobInfo %s\n" % (self.src_file) class Gdal2TilesError(Exception): pass class GDAL2Tiles(object): def __init__(self, input_file, output_folder, options): """Constructor function - initialization""" self.out_drv = None self.mem_drv = None self.warped_input_dataset = None self.out_srs = None self.nativezoom = None self.tminmax = None self.tsize = None self.mercator = None self.geodetic = None self.alphaband = None self.dataBandsCount = None self.out_gt = None self.tileswne = None self.swne = None self.ominx = None self.omaxx = None self.omaxy = None self.ominy = None self.input_file = None self.output_folder = None # Tile format self.tilesize = 256 self.tiledriver = 'PNG' self.tileext = 'png' self.tmp_dir = tempfile.mkdtemp() self.tmp_vrt_filename = os.path.join(self.tmp_dir, str(uuid4()) + '.vrt') # Should we read bigger window of the input raster and scale it down? # Note: Modified later by open_input() # Not for 'near' resampling # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) # Not for 'raster' profile self.scaledquery = True # How big should be query window be for scaling down # Later on reset according the chosen resampling algorithm self.querysize = 4 * self.tilesize # Should we use Read on the input file for generating overview tiles? # Note: Modified later by open_input() # Otherwise the overview tiles are generated from existing underlying tiles self.overviewquery = False self.input_file = input_file self.output_folder = output_folder self.options = options if self.options.resampling == 'near': self.querysize = self.tilesize elif self.options.resampling == 'bilinear': self.querysize = self.tilesize * 2 # User specified zoom levels self.tminz = None self.tmaxz = None if self.options.zoom: minmax = self.options.zoom.split('-', 1) minmax.extend(['']) zoom_min, zoom_max = minmax[:2] self.tminz = int(zoom_min) if zoom_max: self.tmaxz = int(zoom_max) else: self.tmaxz = int(zoom_min) # KML generation self.kml = self.options.kml # ------------------------------------------------------------------------- def open_input(self): """Initialization of the input raster, reprojection if necessary""" gdal.AllRegister() self.out_drv = gdal.GetDriverByName(self.tiledriver) self.mem_drv = gdal.GetDriverByName('MEM') if not self.out_drv: raise Exception("The '%s' driver was not found, is it available in this GDAL build?", self.tiledriver) if not self.mem_drv: raise Exception("The 'MEM' driver was not found, is it available in this GDAL build?") # Open the input file if self.input_file: input_dataset = gdal.Open(self.input_file, gdal.GA_ReadOnly) else: raise Exception("No input file was specified") if self.options.verbose: print("Input file:", "( %sP x %sL - %s bands)" % (input_dataset.RasterXSize, input_dataset.RasterYSize, input_dataset.RasterCount)) if not input_dataset: # Note: GDAL prints the ERROR message too exit_with_error("It is not possible to open the input file '%s'." % self.input_file) # Read metadata from the input file if input_dataset.RasterCount == 0: exit_with_error("Input file '%s' has no raster band" % self.input_file) if input_dataset.GetRasterBand(1).GetRasterColorTable(): exit_with_error( "Please convert this file to RGB/RGBA and run gdal2tiles on the result.", "From paletted file you can create RGBA file (temp.vrt) by:\n" "gdal_translate -of vrt -expand rgba %s temp.vrt\n" "then run:\n" "gdal2tiles temp.vrt" % self.input_file ) in_nodata = setup_no_data_values(input_dataset, self.options) if self.options.verbose: print("Preprocessed file:", "( %sP x %sL - %s bands)" % (input_dataset.RasterXSize, input_dataset.RasterYSize, input_dataset.RasterCount)) in_srs, self.in_srs_wkt = setup_input_srs(input_dataset, self.options) self.out_srs = setup_output_srs(in_srs, self.options) # If input and output reference systems are different, we reproject the input dataset into # the output reference system for easier manipulation self.warped_input_dataset = None if self.options.profile in ('mercator', 'geodetic'): if not in_srs: exit_with_error( "Input file has unknown SRS.", "Use --s_srs ESPG:xyz (or similar) to provide source reference system.") if not has_georeference(input_dataset): exit_with_error( "There is no georeference - neither affine transformation (worldfile) " "nor GCPs. You can generate only 'raster' profile tiles.", "Either gdal2tiles with parameter -p 'raster' or use another GIS " "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs" ) if ((in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or (input_dataset.GetGCPCount() != 0)): self.warped_input_dataset = reproject_dataset( input_dataset, in_srs, self.out_srs) if in_nodata: self.warped_input_dataset = update_no_data_values( self.warped_input_dataset, in_nodata, options=self.options) else: self.warped_input_dataset = update_alpha_value_for_non_alpha_inputs( self.warped_input_dataset, options=self.options) if self.warped_input_dataset and self.options.verbose: print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % ( self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize, self.warped_input_dataset.RasterCount)) if not self.warped_input_dataset: self.warped_input_dataset = input_dataset self.warped_input_dataset.GetDriver().CreateCopy(self.tmp_vrt_filename, self.warped_input_dataset) # Get alpha band (either directly or from NODATA value) self.alphaband = self.warped_input_dataset.GetRasterBand(1).GetMaskBand() self.dataBandsCount = nb_data_bands(self.warped_input_dataset) # KML test self.isepsg4326 = False srs4326 = osr.SpatialReference() srs4326.ImportFromEPSG(4326) if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): self.kml = True self.isepsg4326 = True if self.options.verbose: print("KML autotest OK!") # Read the georeference self.out_gt = self.warped_input_dataset.GetGeoTransform() # Test the size of the pixel # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) if (self.out_gt[2], self.out_gt[4]) != (0, 0): exit_with_error("Georeference of the raster contains rotation or skew. " "Such raster is not supported. Please use gdalwarp first.") # Here we expect: pixel is square, no rotation on the raster # Output Bounds - coordinates in the output SRS self.ominx = self.out_gt[0] self.omaxx = self.out_gt[0] + self.warped_input_dataset.RasterXSize * self.out_gt[1] self.omaxy = self.out_gt[3] self.ominy = self.out_gt[3] - self.warped_input_dataset.RasterYSize * self.out_gt[1] # Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15 if self.options.verbose: print("Bounds (output srs):", round(self.ominx, 13), self.ominy, self.omaxx, self.omaxy) # Calculating ranges for tiles in different zoom levels if self.options.profile == 'mercator': self.mercator = GlobalMercator() # Function which generates SWNE in LatLong for given tile self.tileswne = self.mercator.TileLatLonBounds # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, 32)) for tz in range(0, 32): tminx, tminy = self.mercator.MetersToTile(self.ominx, self.ominy, tz) tmaxx, tmaxy = self.mercator.MetersToTile(self.omaxx, self.omaxy, tz) # crop tiles extending world limits (+-180,+-90) tminx, tminy = max(0, tminx), max(0, tminy) tmaxx, tmaxy = min(2**tz-1, tmaxx), min(2**tz-1, tmaxy) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # TODO: Maps crossing 180E (Alaska?) # Get the minimal zoom level (map covers area equivalent to one tile) if self.tminz is None: self.tminz = self.mercator.ZoomForPixelSize( self.out_gt[1] * max(self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize) / float(self.tilesize)) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tmaxz is None: self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) if self.options.verbose: print("Bounds (latlong):", self.mercator.MetersToLatLon(self.ominx, self.ominy), self.mercator.MetersToLatLon(self.omaxx, self.omaxy)) print('MinZoomLevel:', self.tminz) print("MaxZoomLevel:", self.tmaxz, "(", self.mercator.Resolution(self.tmaxz), ")") if self.options.profile == 'geodetic': self.geodetic = GlobalGeodetic(self.options.tmscompatible) # Function which generates SWNE in LatLong for given tile self.tileswne = self.geodetic.TileLatLonBounds # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, 32)) for tz in range(0, 32): tminx, tminy = self.geodetic.LonLatToTile(self.ominx, self.ominy, tz) tmaxx, tmaxy = self.geodetic.LonLatToTile(self.omaxx, self.omaxy, tz) # crop tiles extending world limits (+-180,+-90) tminx, tminy = max(0, tminx), max(0, tminy) tmaxx, tmaxy = min(2**(tz+1)-1, tmaxx), min(2**tz-1, tmaxy) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # TODO: Maps crossing 180E (Alaska?) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tminz is None: self.tminz = self.geodetic.ZoomForPixelSize( self.out_gt[1] * max(self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize) / float(self.tilesize)) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tmaxz is None: self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) if self.options.verbose: print("Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy) if self.options.profile == 'raster': def log2(x): return math.log10(x) / math.log10(2) self.nativezoom = int( max(math.ceil(log2(self.warped_input_dataset.RasterXSize/float(self.tilesize))), math.ceil(log2(self.warped_input_dataset.RasterYSize/float(self.tilesize))))) if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) # Get the minimal zoom level (whole raster in one tile) if self.tminz is None: self.tminz = 0 # Get the maximal zoom level (native resolution of the raster) if self.tmaxz is None: self.tmaxz = self.nativezoom # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, self.tmaxz+1)) self.tsize = list(range(0, self.tmaxz+1)) for tz in range(0, self.tmaxz+1): tsize = 2.0**(self.nativezoom-tz)*self.tilesize tminx, tminy = 0, 0 tmaxx = int(math.ceil(self.warped_input_dataset.RasterXSize / tsize)) - 1 tmaxy = int(math.ceil(self.warped_input_dataset.RasterYSize / tsize)) - 1 self.tsize[tz] = math.ceil(tsize) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # Function which generates SWNE in LatLong for given tile if self.kml and self.in_srs_wkt: ct = osr.CoordinateTransformation(in_srs, srs4326) def rastertileswne(x, y, z): pixelsizex = (2**(self.tmaxz-z) * self.out_gt[1]) # X-pixel size in level west = self.out_gt[0] + x*self.tilesize*pixelsizex east = west + self.tilesize*pixelsizex south = self.ominy + y*self.tilesize*pixelsizex north = south + self.tilesize*pixelsizex if not self.isepsg4326: # Transformation to EPSG:4326 (WGS84 datum) west, south = ct.TransformPoint(west, south)[:2] east, north = ct.TransformPoint(east, north)[:2] return south, west, north, east self.tileswne = rastertileswne else: self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa def generate_metadata(self): """ Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing). """ if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if self.options.profile == 'mercator': south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) south, west = max(-85.05112878, south), max(-180.0, west) north, east = min(85.05112878, north), min(180.0, east) self.swne = (south, west, north, east) # Generate googlemaps.html if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'googlemaps.html'))): with open(os.path.join(self.output_folder, 'googlemaps.html'), 'wb') as f: f.write(self.generate_googlemaps().encode('utf-8')) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate leaflet.html if self.options.webviewer in ('all', 'leaflet'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'leaflet.html'))): with open(os.path.join(self.output_folder, 'leaflet.html'), 'wb') as f: f.write(self.generate_leaflet().encode('utf-8')) elif self.options.profile == 'geodetic': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy south, west = max(-90.0, south), max(-180.0, west) north, east = min(90.0, north), min(180.0, east) self.swne = (south, west, north, east) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) elif self.options.profile == 'raster': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy self.swne = (south, west, north, east) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate tilemapresource.xml. if not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'tilemapresource.xml')): with open(os.path.join(self.output_folder, 'tilemapresource.xml'), 'wb') as f: f.write(self.generate_tilemapresource().encode('utf-8')) if self.kml: # TODO: Maybe problem for not automatically generated tminz # The root KML should contain links to all tiles in the tminz level children = [] xmin, ymin, xmax, ymax = self.tminmax[self.tminz] for x in range(xmin, xmax+1): for y in range(ymin, ymax+1): children.append([x, y, self.tminz]) # Generate Root KML if self.kml: if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'doc.kml'))): with open(os.path.join(self.output_folder, 'doc.kml'), 'wb') as f: f.write(generate_kml( None, None, None, self.tileext, self.tilesize, self.tileswne, self.options, children ).encode('utf-8')) def generate_base_tiles(self): """ Generation of the base tiles (the lowest in the pyramid) directly from the input raster """ if not self.options.quiet: print("Generating Base Tiles:") if self.options.verbose: print('') print("Tiles generated from the max zoom level:") print("----------------------------------------") print('') # Set the bounds tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] ds = self.warped_input_dataset tilebands = self.dataBandsCount + 1 querysize = self.querysize if self.options.verbose: print("dataBandsCount: ", self.dataBandsCount) print("tilebands: ", tilebands) tcount = (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) ti = 0 tile_details = [] tz = self.tmaxz for ty in range(tmaxy, tminy-1, -1): for tx in range(tminx, tmaxx+1): ti += 1 tilefilename = os.path.join( self.output_folder, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) if self.options.verbose: print(ti, '/', tcount, tilefilename) if self.options.resume and os.path.exists(tilefilename): if self.options.verbose: print("Tile generation skipped because of --resume") continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) if self.options.profile == 'mercator': # Tile bounds in EPSG:3857 b = self.mercator.TileBounds(tx, ty, tz) elif self.options.profile == 'geodetic': b = self.geodetic.TileBounds(tx, ty, tz) # Don't scale up by nearest neighbour, better change the querysize # to the native resolution (and return smaller query tile) for scaling if self.options.profile in ('mercator', 'geodetic'): rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) # Pixel size in the raster covering query geo extent nativesize = wb[0] + wb[2] if self.options.verbose: print("\tNative Extent (querysize", nativesize, "): ", rb, wb) # Tile bounds in raster coordinates for ReadRaster query rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1], querysize=querysize) rx, ry, rxsize, rysize = rb wx, wy, wxsize, wysize = wb else: # 'raster' profile: tsize = int(self.tsize[tz]) # tilesize in raster coordinates for actual zoom xsize = self.warped_input_dataset.RasterXSize # size of the raster in pixels ysize = self.warped_input_dataset.RasterYSize if tz >= self.nativezoom: querysize = self.tilesize rx = (tx) * tsize rxsize = 0 if tx == tmaxx: rxsize = xsize % tsize if rxsize == 0: rxsize = tsize rysize = 0 if ty == tmaxy: rysize = ysize % tsize if rysize == 0: rysize = tsize ry = ysize - (ty * tsize) - rysize wx, wy = 0, 0 wxsize = int(rxsize/float(tsize) * self.tilesize) wysize = int(rysize/float(tsize) * self.tilesize) if wysize != self.tilesize: wy = self.tilesize - wysize # Read the source raster if anything is going inside the tile as per the computed # geo_query tile_details.append( TileDetail( tx=tx, ty=ty, tz=tz, rx=rx, ry=ry, rxsize=rxsize, rysize=rysize, wx=wx, wy=wy, wxsize=wxsize, wysize=wysize, querysize=querysize, ) ) conf = TileJobInfo( src_file=self.tmp_vrt_filename, nb_data_bands=self.dataBandsCount, output_file_path=self.output_folder, tile_extension=self.tileext, tile_driver=self.tiledriver, tile_size=self.tilesize, kml=self.kml, tminmax=self.tminmax, tminz=self.tminz, tmaxz=self.tmaxz, in_srs_wkt=self.in_srs_wkt, out_geo_trans=self.out_gt, ominy=self.ominy, is_epsg_4326=self.isepsg4326, options=self.options, ) return conf, tile_details def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): """ For given dataset and query in cartographic coordinates returns parameters for ReadRaster() in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the extent is returned in the native resolution of dataset ds. raises Gdal2TilesError if the dataset does not contain anything inside this geo_query """ geotran = ds.GetGeoTransform() rx = int((ulx - geotran[0]) / geotran[1] + 0.001) ry = int((uly - geotran[3]) / geotran[5] + 0.001) rxsize = int((lrx - ulx) / geotran[1] + 0.5) rysize = int((lry - uly) / geotran[5] + 0.5) if not querysize: wxsize, wysize = rxsize, rysize else: wxsize, wysize = querysize, querysize # Coordinates should not go out of the bounds of the raster wx = 0 if rx < 0: rxshift = abs(rx) wx = int(wxsize * (float(rxshift) / rxsize)) wxsize = wxsize - wx rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) rx = 0 if rx+rxsize > ds.RasterXSize: wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) rxsize = ds.RasterXSize - rx wy = 0 if ry < 0: ryshift = abs(ry) wy = int(wysize * (float(ryshift) / rysize)) wysize = wysize - wy rysize = rysize - int(rysize * (float(ryshift) / rysize)) ry = 0 if ry+rysize > ds.RasterYSize: wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) rysize = ds.RasterYSize - ry return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) def generate_tilemapresource(self): """ Template for tilemapresource.xml. Returns filled string. Expected variables: title, north, south, east, west, isepsg4326, projection, publishurl, zoompixels, tilesize, tileformat, profile """ args = {} args['title'] = self.options.title args['south'], args['west'], args['north'], args['east'] = self.swne args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['profile'] = self.options.profile if self.options.profile == 'mercator': args['srs'] = "EPSG:3857" elif self.options.profile == 'geodetic': args['srs'] = "EPSG:4326" elif self.options.s_srs: args['srs'] = self.options.s_srs elif self.out_srs: args['srs'] = self.out_srs.ExportToWkt() else: args['srs'] = "" s = """ %(title)s %(srs)s """ % args # noqa for z in range(self.tminz, self.tmaxz+1): if self.options.profile == 'raster': s += """ \n""" % ( args['publishurl'], z, (2**(self.nativezoom-z) * self.out_gt[1]), z) elif self.options.profile == 'mercator': s += """ \n""" % ( args['publishurl'], z, 156543.0339/2**z, z) elif self.options.profile == 'geodetic': s += """ \n""" % ( args['publishurl'], z, 0.703125/2**z, z) s += """ """ return s def generate_googlemaps(self): """ Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title args['googlemapskey'] = self.options.googlekey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright s = r""" %(title)s
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC
""" % args # noqa return s def generate_leaflet(self): """ Template for leaflet.html implementing overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title.replace('"', '\\"') args['htmltitle'] = self.options.title args['south'], args['west'], args['north'], args['east'] = self.swne args['centerlon'] = (args['north'] + args['south']) / 2. args['centerlat'] = (args['west'] + args['east']) / 2. args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['beginzoom'] = self.tmaxz args['tilesize'] = self.tilesize # not used args['tileformat'] = self.tileext args['publishurl'] = self.options.url # not used args['copyright'] = self.options.copyright.replace('"', '\\"') s = """ %(htmltitle)s
""" % args # noqa return s def generate_openlayers(self): """ Template for openlayers.html implementing overlay of available Spherical Mercator layers. It returns filled string. Expected variables: title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title args['bingkey'] = self.options.bingkey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright if self.options.tmscompatible: args['tmsoffset'] = "-1" else: args['tmsoffset'] = "" if self.options.profile == 'raster': args['rasterzoomlevels'] = self.tmaxz+1 args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1] s = r""" %(title)s """ % args # noqa if self.options.profile == 'mercator': s += """ """ % args s += """
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC
""" % args # noqa return s def worker_tile_details(input_file, output_folder, options, send_pipe=None): try: gdal2tiles = GDAL2Tiles(input_file, output_folder, options) gdal2tiles.open_input() gdal2tiles.generate_metadata() tile_job_info, tile_details = gdal2tiles.generate_base_tiles() return_data = (tile_job_info, tile_details) if send_pipe: send_pipe.send(return_data) return return_data except Exception as e: print("worker_tile_details failed ", str(e)) def progress_printer_thread(queue, nb_jobs): pb = ProgressBar(nb_jobs) pb.start() for _ in range(nb_jobs): queue.get() pb.log_progress() queue.task_done() class ProgressBar(object): def __init__(self, total_items): self.total_items = total_items self.nb_items_done = 0 self.current_progress = 0 self.STEP = 2.5 def start(self): sys.stdout.write("0") def log_progress(self, nb_items=1): self.nb_items_done += nb_items progress = float(self.nb_items_done) / self.total_items * 100 if progress >= self.current_progress + self.STEP: done = False while not done: if self.current_progress + self.STEP <= progress: self.current_progress += self.STEP if self.current_progress % 10 == 0: sys.stdout.write(str(int(self.current_progress))) if self.current_progress == 100: sys.stdout.write("\n") else: sys.stdout.write(".") else: done = True sys.stdout.flush() def get_tile_swne(tile_job_info, options): if options.profile == 'mercator': mercator = GlobalMercator() tile_swne = mercator.TileLatLonBounds elif options.profile == 'geodetic': geodetic = GlobalGeodetic(options.tmscompatible) tile_swne = geodetic.TileLatLonBounds elif options.profile == 'raster': srs4326 = osr.SpatialReference() srs4326.ImportFromEPSG(4326) if tile_job_info.kml and tile_job_info.in_srs_wkt: in_srs = osr.SpatialReference() in_srs.ImportFromWkt(tile_job_info.in_srs_wkt) ct = osr.CoordinateTransformation(in_srs, srs4326) def rastertileswne(x, y, z): pixelsizex = (2 ** (tile_job_info.tmaxz - z) * tile_job_info.out_geo_trans[1]) west = tile_job_info.out_geo_trans[0] + x * tile_job_info.tilesize * pixelsizex east = west + tile_job_info.tilesize * pixelsizex south = tile_job_info.ominy + y * tile_job_info.tilesize * pixelsizex north = south + tile_job_info.tilesize * pixelsizex if not tile_job_info.is_epsg_4326: # Transformation to EPSG:4326 (WGS84 datum) west, south = ct.TransformPoint(west, south)[:2] east, north = ct.TransformPoint(east, north)[:2] return south, west, north, east tile_swne = rastertileswne else: tile_swne = lambda x, y, z: (0, 0, 0, 0) # noqa else: tile_swne = lambda x, y, z: (0, 0, 0, 0) # noqa return tile_swne def single_threaded_tiling(input_file, output_folder, options): """ Keep a single threaded version that stays clear of multiprocessing, for platforms that would not support it """ if options.verbose: print("Begin tiles details calc") conf, tile_details = worker_tile_details(input_file, output_folder, options) if options.verbose: print("Tiles details calc complete.") if not options.verbose and not options.quiet: progress_bar = ProgressBar(len(tile_details)) progress_bar.start() for tile_detail in tile_details: create_base_tile(conf, tile_detail) if not options.verbose and not options.quiet: progress_bar.log_progress() create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file)) def multi_threaded_tiling(input_file, output_folder, options): nb_processes = options.nb_processes or 1 (conf_receiver, conf_sender) = Pipe(False) if options.verbose: print("Begin tiles details calc") p = Process(target=worker_tile_details, args=[input_file, output_folder, options], kwargs={"send_pipe": conf_sender}) p.start() # Make sure to consume the queue before joining. If the payload is too big, it won't be put in # one go in the queue and therefore the sending process will never finish, waiting for space in # the queue to send data conf, tile_details = conf_receiver.recv() p.join() if options.verbose: print("Tiles details calc complete.") # Have to create the Queue through a multiprocessing.Manager to get a Queue Proxy, # otherwise you can't pass it as a param in the method invoked by the pool... manager = Manager() queue = manager.Queue() pool = Pool(processes=nb_processes) # TODO: gbataille - check the confs for which each element is an array... one useless level? # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." # TODO: gbataille - check memory footprint and time on big image. are they opened x times for tile_detail in tile_details: pool.apply_async(create_base_tile, (conf, tile_detail), {"queue": queue}) if not options.verbose and not options.quiet: p = Process(target=progress_printer_thread, args=[queue, len(tile_details)]) p.start() pool.close() pool.join() # Jobs finished if not options.verbose and not options.quiet: p.join() # Traces done create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file)) def main(): # TODO: gbataille - use mkdtemp to work in a temp directory # TODO: gbataille - debug intermediate tiles.vrt not produced anymore? # TODO: gbataille - Refactor generate overview tiles to not depend on self variables argv = gdal.GeneralCmdLineProcessor(sys.argv) input_file, output_folder, options = process_args(argv[1:]) nb_processes = options.nb_processes or 1 if nb_processes == 1: single_threaded_tiling(input_file, output_folder, options) else: multi_threaded_tiling(input_file, output_folder, options) if __name__ == '__main__': main() # vim: set tabstop=4 shiftwidth=4 expandtab: