Merge pull request #1210 from pierotofy/230

Bug fixes, speed improvements and license change to AGPL
pull/1221/head
Piero Toffanin 2020-12-07 08:32:46 -05:00 zatwierdzone przez GitHub
commit 050a7ff8cc
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: 4AEE18F83AFDEB23
31 zmienionych plików z 694 dodań i 776 usunięć

Wyświetl plik

@ -19,7 +19,7 @@ RUN rm -rf \
/code/SuperBuild/build/opencv \
/code/SuperBuild/download \
/code/SuperBuild/src/ceres \
/code/SuperBuild/src/entwine \
/code/SuperBuild/src/untwine \
/code/SuperBuild/src/gflags \
/code/SuperBuild/src/hexer \
/code/SuperBuild/src/lastools \

153
LICENSE
Wyświetl plik

@ -1,23 +1,21 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
@ -26,44 +24,34 @@ them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
@ -72,7 +60,7 @@ modification follow.
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
@ -549,35 +537,45 @@ to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
@ -631,44 +629,33 @@ to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
GNU Affero General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

Wyświetl plik

@ -108,7 +108,7 @@ set(custom_libs OpenSfM
LASzip
Zstd
PDAL
Entwine
Untwine
MvsTexturing
OpenMVS
)

Wyświetl plik

@ -20,7 +20,7 @@ ExternalProject_Add(${_proj_name}
#--Download step--------------
DOWNLOAD_DIR ${SB_DOWNLOAD_DIR}
GIT_REPOSITORY https://github.com/OpenDroneMap/openMVS
GIT_TAG 210
GIT_TAG 230
#--Update/Patch step----------
UPDATE_COMMAND ""
#--Configure step-------------

Wyświetl plik

@ -9,7 +9,7 @@ ExternalProject_Add(${_proj_name}
#--Download step--------------
DOWNLOAD_DIR ${SB_DOWNLOAD_DIR}
GIT_REPOSITORY https://github.com/OpenDroneMap/OpenSfM/
GIT_TAG 221
GIT_TAG 230
#--Update/Patch step----------
UPDATE_COMMAND git submodule update --init --recursive
#--Configure step-------------

Wyświetl plik

@ -1,4 +1,4 @@
set(_proj_name entwine)
set(_proj_name untwine)
set(_SB_BINARY_DIR "${SB_BINARY_DIR}/${_proj_name}")
ExternalProject_Add(${_proj_name}
@ -8,16 +8,14 @@ ExternalProject_Add(${_proj_name}
STAMP_DIR ${_SB_BINARY_DIR}/stamp
#--Download step--------------
DOWNLOAD_DIR ${SB_DOWNLOAD_DIR}
GIT_REPOSITORY https://github.com/connormanning/entwine/
GIT_TAG 2.1.0
GIT_REPOSITORY https://github.com/pierotofy/untwine/
GIT_TAG insttgt
#--Update/Patch step----------
UPDATE_COMMAND ""
#--Configure step-------------
SOURCE_DIR ${SB_SOURCE_DIR}/${_proj_name}
CMAKE_ARGS
-DCMAKE_CXX_FLAGS=-isystem\ ${SB_SOURCE_DIR}/pdal
-DADDITIONAL_LINK_DIRECTORIES_PATHS=${SB_INSTALL_DIR}/lib
-DWITH_TESTS=OFF
-DPDAL_DIR=${SB_INSTALL_DIR}/lib/cmake/PDAL
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_INSTALL_PREFIX:PATH=${SB_INSTALL_DIR}
#--Build step-----------------

Wyświetl plik

@ -1 +1 @@
2.2.1
2.3.0

Wyświetl plik

@ -1,42 +0,0 @@
project(odm_slam)
cmake_minimum_required(VERSION 2.8)
# Set opencv dir to the input spedified with option -DOPENCV_DIR="path"
set(OPENCV_DIR "OPENCV_DIR-NOTFOUND" CACHE "OPENCV_DIR" "Path to the opencv installation directory")
# Add compiler options.
add_definitions(-Wall -Wextra)
# Find pcl at the location specified by PCL_DIR
find_package(VTK 6.0 REQUIRED)
find_package(PCL 1.8 HINTS "${PCL_DIR}/share/pcl-1.8" REQUIRED)
# Find OpenCV at the default location
find_package(OpenCV HINTS "${OPENCV_DIR}" REQUIRED)
# Only link with required opencv modules.
set(OpenCV_LIBS opencv_core opencv_imgproc opencv_highgui)
# Add the Eigen and OpenCV include dirs.
# Necessary since the PCL_INCLUDE_DIR variable set by find_package is broken.)
include_directories(${EIGEN_ROOT})
include_directories(${OpenCV_INCLUDE_DIRS})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC -std=c++11")
set(PANGOLIN_ROOT ${CMAKE_BINARY_DIR}/../SuperBuild/install)
set(ORB_SLAM_ROOT ${CMAKE_BINARY_DIR}/../SuperBuild/src/orb_slam2)
include_directories(${EIGEN_ROOT})
include_directories(${ORB_SLAM_ROOT})
include_directories(${ORB_SLAM_ROOT}/include)
link_directories(${PANGOLIN_ROOT}/lib)
link_directories(${ORB_SLAM_ROOT}/lib)
# Add source directory
aux_source_directory("./src" SRC_LIST)
# Add exectuteable
add_executable(${PROJECT_NAME} ${SRC_LIST})
target_link_libraries(odm_slam ${OpenCV_LIBS} ORB_SLAM2 pangolin)

Wyświetl plik

@ -1,98 +0,0 @@
#include <iostream>
#include <opencv2/opencv.hpp>
#include <System.h>
#include <Converter.h>
void SaveKeyFrameTrajectory(ORB_SLAM2::Map *map, const string &filename, const string &tracksfile) {
std::cout << std::endl << "Saving keyframe trajectory to " << filename << " ..." << std::endl;
vector<ORB_SLAM2::KeyFrame*> vpKFs = map->GetAllKeyFrames();
sort(vpKFs.begin(), vpKFs.end(), ORB_SLAM2::KeyFrame::lId);
std::ofstream f;
f.open(filename.c_str());
f << fixed;
std::ofstream fpoints;
fpoints.open(tracksfile.c_str());
fpoints << fixed;
for(size_t i = 0; i < vpKFs.size(); i++) {
ORB_SLAM2::KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
cv::Mat R = pKF->GetRotation().t();
vector<float> q = ORB_SLAM2::Converter::toQuaternion(R);
cv::Mat t = pKF->GetCameraCenter();
f << setprecision(6) << pKF->mTimeStamp << setprecision(7) << " " << t.at<float>(0) << " " << t.at<float>(1) << " " << t.at<float>(2)
<< " " << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << std::endl;
for (auto point : pKF->GetMapPoints()) {
auto coords = point->GetWorldPos();
fpoints << setprecision(6)
<< pKF->mTimeStamp
<< " " << point->mnId
<< setprecision(7)
<< " " << coords.at<float>(0, 0)
<< " " << coords.at<float>(1, 0)
<< " " << coords.at<float>(2, 0)
<< std::endl;
}
}
f.close();
fpoints.close();
std::cout << std::endl << "trajectory saved!" << std::endl;
}
int main(int argc, char **argv) {
if(argc != 4) {
std::cerr << std::endl <<
"Usage: " << argv[0] << " vocabulary settings video" <<
std::endl;
return 1;
}
cv::VideoCapture cap(argv[3]);
if(!cap.isOpened()) {
std::cerr << "Failed to load video: " << argv[3] << std::endl;
return -1;
}
ORB_SLAM2::System SLAM(argv[1], argv[2], ORB_SLAM2::System::MONOCULAR, true);
usleep(10 * 1e6);
std::cout << "Start processing video ..." << std::endl;
double T = 0.1; // Seconds between frames
cv::Mat im;
int num_frames = cap.get(CV_CAP_PROP_FRAME_COUNT);
for(int ni = 0;; ++ni){
std::cout << "processing frame " << ni << "/" << num_frames << std::endl;
// Get frame
bool res = false;
for (int trial = 0; !res && trial < 20; ++trial) {
std::cout << "trial " << trial << std::endl;
res = cap.read(im);
}
if(!res) break;
double timestamp = ni * T;
SLAM.TrackMonocular(im, timestamp);
//usleep(int(T * 1e6));
}
SLAM.Shutdown();
SaveKeyFrameTrajectory(SLAM.GetMap(), "KeyFrameTrajectory.txt", "MapPoints.txt");
return 0;
}

Wyświetl plik

@ -1,152 +0,0 @@
#!/usr/bin/env python
import argparse
import sys
import numpy as np
import cv2
class Calibrator:
"""Camera calibration using a chessboard pattern."""
def __init__(self, pattern_width, pattern_height, motion_threshold=0.05):
"""Init the calibrator.
The parameter motion_threshold determines the minimal motion required
to add a new frame to the calibration data, as a ratio of image width.
"""
self.pattern_size = (pattern_width, pattern_height)
self.motion_threshold = motion_threshold
self.pattern_points = np.array([
(i, j, 0.0)
for j in range(pattern_height)
for i in range(pattern_width)
], dtype=np.float32)
self.object_points = []
self.image_points = []
def process_image(self, image, window_name):
"""Find corners of an image and store them internally."""
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
h, w = gray.shape
self.image_size = (w, h)
found, corners = cv2.findChessboardCorners(gray, self.pattern_size)
if found:
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
self._add_points(corners.reshape(-1, 2))
if window_name:
cv2.drawChessboardCorners(image, self.pattern_size, corners, found)
cv2.imshow(window_name, image)
return found
def calibrate(self):
"""Run calibration using points extracted by process_image."""
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(
self.object_points, self.image_points, self.image_size, None, None)
return rms, camera_matrix, dist_coefs.ravel()
def _add_points(self, image_points):
if self.image_points:
delta = np.fabs(image_points - self.image_points[-1]).max()
should_add = (delta > self.image_size[0] * self.motion_threshold)
else:
should_add = True
if should_add:
self.image_points.append(image_points)
self.object_points.append(self.pattern_points)
def video_frames(filename):
"""Yield frames in a video."""
cap = cv2.VideoCapture(args.video)
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
cap.release()
def orb_slam_calibration_config(camera_matrix, dist_coefs):
"""String with calibration parameters in orb_slam config format."""
lines = [
"# Camera calibration and distortion parameters (OpenCV)",
"Camera.fx: {}".format(camera_matrix[0, 0]),
"Camera.fy: {}".format(camera_matrix[1, 1]),
"Camera.cx: {}".format(camera_matrix[0, 2]),
"Camera.cy: {}".format(camera_matrix[1, 2]),
"",
"Camera.k1: {}".format(dist_coefs[0]),
"Camera.k2: {}".format(dist_coefs[1]),
"Camera.p1: {}".format(dist_coefs[2]),
"Camera.p2: {}".format(dist_coefs[3]),
"Camera.k3: {}".format(dist_coefs[4]),
]
return "\n".join(lines)
def parse_arguments():
parser = argparse.ArgumentParser(
description="Camera calibration from video of a chessboard.")
parser.add_argument(
'video',
help="video of the checkerboard")
parser.add_argument(
'--output',
default='calibration',
help="base name for the output files")
parser.add_argument(
'--size',
default='8x6',
help="size of the chessboard")
parser.add_argument(
'--visual',
action='store_true',
help="display images while calibrating")
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
pattern_size = [int(i) for i in args.size.split('x')]
calibrator = Calibrator(pattern_size[0], pattern_size[1])
window_name = None
if args.visual:
window_name = 'Chessboard detection'
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
print "kept\tcurrent\tchessboard found"
for i, frame in enumerate(video_frames(args.video)):
found = calibrator.process_image(frame, window_name)
print "{}\t{}\t{} \r".format(
len(calibrator.image_points), i, found),
sys.stdout.flush()
if args.visual:
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
rms, camera_matrix, dist_coefs = calibrator.calibrate()
print
print "RMS:", rms
print
print orb_slam_calibration_config(camera_matrix, dist_coefs)

Wyświetl plik

@ -1,196 +0,0 @@
import argparse
import json
import os
import yaml
import cv2
import numpy as np
from opensfm import transformations as tf
from opensfm.io import mkdir_p
SCALE = 50
def parse_orb_slam2_config_file(filename):
'''
Parse ORB_SLAM2 config file.
Parsing manually since neither pyyaml nor cv2.FileStorage seem to work.
'''
res = {}
with open(filename) as fin:
lines = fin.readlines()
for line in lines:
line = line.strip()
if line and line[0] != '#' and ':' in line:
key, value = line.split(':')
res[key.strip()] = value.strip()
return res
def camera_from_config(video_filename, config_filename):
'''
Creates an OpenSfM from an ORB_SLAM2 config
'''
config = parse_orb_slam2_config_file(config_filename)
fx = float(config['Camera.fx'])
fy = float(config['Camera.fy'])
cx = float(config['Camera.cx'])
cy = float(config['Camera.cy'])
k1 = float(config['Camera.k1'])
k2 = float(config['Camera.k2'])
p1 = float(config['Camera.p1'])
p2 = float(config['Camera.p2'])
width, height = get_video_size(video_filename)
size = max(width, height)
return {
'width': width,
'height': height,
'focal': np.sqrt(fx * fy) / size,
'k1': k1,
'k2': k2
}
def shot_id_from_timestamp(timestamp):
T = 0.1 # TODO(pau) get this from config
i = int(round(timestamp / T))
return 'frame{0:06d}.png'.format(i)
def shots_from_trajectory(trajectory_filename):
'''
Create opensfm shots from an orb_slam2/TUM trajectory
'''
shots = {}
with open(trajectory_filename) as fin:
lines = fin.readlines()
for line in lines:
a = map(float, line.split())
timestamp = a[0]
c = np.array(a[1:4])
q = np.array(a[4:8])
R = tf.quaternion_matrix([q[3], q[0], q[1], q[2]])[:3, :3].T
t = -R.dot(c) * SCALE
shot = {
'camera': 'slamcam',
'rotation': list(cv2.Rodrigues(R)[0].flat),
'translation': list(t.flat),
'created_at': timestamp,
}
shots[shot_id_from_timestamp(timestamp)] = shot
return shots
def points_from_map_points(filename):
points = {}
with open(filename) as fin:
lines = fin.readlines()
for line in lines:
words = line.split()
point_id = words[1]
coords = map(float, words[2:5])
coords = [SCALE * i for i in coords]
points[point_id] = {
'coordinates': coords,
'color': [100, 0, 200]
}
return points
def tracks_from_map_points(filename):
tracks = []
with open(filename) as fin:
lines = fin.readlines()
for line in lines:
words = line.split()
timestamp = float(words[0])
shot_id = shot_id_from_timestamp(timestamp)
point_id = words[1]
row = [shot_id, point_id, point_id, '0', '0', '0', '0', '0']
tracks.append('\t'.join(row))
return '\n'.join(tracks)
def get_video_size(video):
cap = cv2.VideoCapture(video)
width = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT))
cap.release()
return width, height
def extract_keyframes_from_video(video, reconstruction):
'''
Reads video and extracts a frame for each shot in reconstruction
'''
image_path = 'images'
mkdir_p(image_path)
T = 0.1 # TODO(pau) get this from config
cap = cv2.VideoCapture(video)
video_idx = 0
shot_ids = sorted(reconstruction['shots'].keys())
for shot_id in shot_ids:
shot = reconstruction['shots'][shot_id]
timestamp = shot['created_at']
keyframe_idx = int(round(timestamp / T))
while video_idx <= keyframe_idx:
for i in range(20):
ret, frame = cap.read()
if ret:
break
else:
print 'retrying'
if not ret:
raise RuntimeError(
'Cound not find keyframe {} in video'.format(shot_id))
if video_idx == keyframe_idx:
cv2.imwrite(os.path.join(image_path, shot_id), frame)
video_idx += 1
cap.release()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Convert ORB_SLAM2 output to OpenSfM')
parser.add_argument(
'video',
help='the tracked video file')
parser.add_argument(
'trajectory',
help='the trajectory file')
parser.add_argument(
'points',
help='the map points file')
parser.add_argument(
'config',
help='config file with camera calibration')
args = parser.parse_args()
r = {
'cameras': {},
'shots': {},
'points': {},
}
r['cameras']['slamcam'] = camera_from_config(args.video, args.config)
r['shots'] = shots_from_trajectory(args.trajectory)
r['points'] = points_from_map_points(args.points)
tracks = tracks_from_map_points(args.points)
with open('reconstruction.json', 'w') as fout:
json.dump([r], fout, indent=4)
with open('tracks.csv', 'w') as fout:
fout.write(tracks)
extract_keyframes_from_video(args.video, r)

Wyświetl plik

@ -1,53 +0,0 @@
#!/usr/bin/env python
import argparse
import os
import cv2
import numpy as np
import opensfm.dataset as dataset
import opensfm.io as io
def opencv_calibration_matrix(width, height, focal):
'''Calibration matrix as used by OpenCV and PMVS
'''
f = focal * max(width, height)
return np.matrix([[f, 0, 0.5 * (width - 1)],
[0, f, 0.5 * (height - 1)],
[0, 0, 1.0]])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Undistort images')
parser.add_argument('dataset', help='path to the dataset to be processed')
parser.add_argument('--output', help='output folder for the undistorted images')
args = parser.parse_args()
data = dataset.DataSet(args.dataset)
if args.output:
output_path = args.output
else:
output_path = os.path.join(data.data_path, 'undistorted')
print "Undistorting images from dataset [%s] to dir [%s]" % (data.data_path, output_path)
io.mkdir_p(output_path)
reconstructions = data.load_reconstruction()
for h, reconstruction in enumerate(reconstructions):
print "undistorting reconstruction", h
for image in reconstruction['shots']:
print "undistorting image", image
shot = reconstruction["shots"][image]
original_image = data.image_as_array(image)[:,:,::-1]
camera = reconstruction['cameras'][shot['camera']]
original_h, original_w = original_image.shape[:2]
K = opencv_calibration_matrix(original_w, original_h, camera['focal'])
k1 = camera["k1"]
k2 = camera["k2"]
undistorted_image = cv2.undistort(original_image, K, np.array([k1, k2, 0, 0]))
new_image_path = os.path.join(output_path, image.split('/')[-1])
cv2.imwrite(new_image_path, undistorted_image)

Wyświetl plik

@ -24,7 +24,7 @@ def get_max_memory_mb(minimum = 100, use_at_most = 0.5):
"""
return max(minimum, (virtual_memory().available / 1024 / 1024) * use_at_most)
def parallel_map(func, items, max_workers=1):
def parallel_map(func, items, max_workers=1, single_thread_fallback=True):
"""
Our own implementation for parallel processing
which handles gracefully CTRL+C and reverts to
@ -85,7 +85,7 @@ def parallel_map(func, items, max_workers=1):
stop_workers()
if error is not None:
if error is not None and single_thread_fallback:
# Try to reprocess using a single thread
# in case this was a memory error
log.ODM_WARNING("Failed to run process in parallel, retrying with a single thread...")

Wyświetl plik

@ -156,6 +156,15 @@ def config(argv=None, parser=None):
help=('Set feature extraction quality. Higher quality generates better features, but requires more memory and takes longer. '
'Can be one of: %(choices)s. Default: '
'%(default)s'))
parser.add_argument('--matcher-type',
metavar='<string>',
action=StoreValue,
default='flann',
choices=['flann', 'bow'],
help=('Matcher algorithm, Fast Library for Approximate Nearest Neighbors or Bag of Words. FLANN is slower, but more stable. BOW is faster, but can sometimes miss valid matches. '
'Can be one of: %(choices)s. Default: '
'%(default)s'))
parser.add_argument('--matcher-neighbors',
metavar='<integer>',
@ -464,13 +473,6 @@ def config(argv=None, parser=None):
'[none, gauss_damping, gauss_clamping]. Default: '
'%(default)s'))
parser.add_argument('--texturing-skip-visibility-test',
action=StoreTrue,
nargs=0,
default=False,
help=('Skip geometric visibility test. Default: '
' %(default)s'))
parser.add_argument('--texturing-skip-global-seam-leveling',
action=StoreTrue,
nargs=0,
@ -484,20 +486,6 @@ def config(argv=None, parser=None):
default=False,
help='Skip local seam blending. Default: %(default)s')
parser.add_argument('--texturing-skip-hole-filling',
action=StoreTrue,
nargs=0,
default=False,
help=('Skip filling of holes in the mesh. Default: '
' %(default)s'))
parser.add_argument('--texturing-keep-unseen-faces',
action=StoreTrue,
nargs=0,
default=False,
help=('Keep faces in the mesh that are not seen in any camera. '
'Default: %(default)s'))
parser.add_argument('--texturing-tone-mapping',
metavar='<string>',
action=StoreValue,
@ -755,6 +743,15 @@ def config(argv=None, parser=None):
'points will be re-classified and gaps will be filled. Useful for generating DTMs. '
'Default: %(default)s'))
parser.add_argument('--primary-band',
metavar='<string>',
action=StoreValue,
default="auto",
type=str,
help=('When processing multispectral datasets, you can specify the name of the primary band that will be used for reconstruction. '
'It\'s recommended to choose a band which has sharp details and is in focus. '
'Default: %(default)s'))
args = parser.parse_args(argv)
# check that the project path setting has been set properly

Wyświetl plik

@ -214,12 +214,14 @@ def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56']
# so we need to convert to GeoTIFF first.
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
'{tiles_vrt} {geotiff_tmp}'.format(**kwargs))
# Scale to 10% size
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
'-outsize 10% 0 '
'{geotiff_tmp} {geotiff_small}'.format(**kwargs))
@ -227,6 +229,7 @@ def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56']
# Fill scaled
run('gdal_fillnodata.py '
'-co NUM_THREADS={threads} '
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
'-b 1 '
'-of GTiff '
@ -237,6 +240,7 @@ def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56']
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co TILED=YES '
'-co BIGTIFF=IF_SAFER '
'-co COMPRESS=DEFLATE '
'--config GDAL_CACHEMAX {max_memory}% '
'{merged_vrt} {geotiff}'.format(**kwargs))
@ -244,6 +248,7 @@ def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56']
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co TILED=YES '
'-co BIGTIFF=IF_SAFER '
'-co COMPRESS=DEFLATE '
'--config GDAL_CACHEMAX {max_memory}% '
'{tiles_vrt} {geotiff}'.format(**kwargs))

Wyświetl plik

@ -19,24 +19,15 @@ def build(input_point_cloud_files, output_path, max_concurrency=8, rerun=False):
shutil.rmtree(output_path)
kwargs = {
'threads': max_concurrency,
# 'threads': max_concurrency,
'tmpdir': tmpdir,
'all_inputs': "-i " + " ".join(map(quote, input_point_cloud_files)),
'files': "--files " + " ".join(map(quote, input_point_cloud_files)),
'outputdir': output_path
}
# Run scan to compute dataset bounds
system.run('entwine scan --threads {threads} --tmp "{tmpdir}" {all_inputs} -o "{outputdir}"'.format(**kwargs))
scan_json = os.path.join(output_path, "scan.json")
# Run untwine
system.run('untwine --temp_dir "{tmpdir}" {files} --output_dir "{outputdir}"'.format(**kwargs))
if os.path.exists(scan_json):
kwargs['input'] = scan_json
for _ in range(num_files):
# One at a time
system.run('entwine build --threads {threads} --tmp "{tmpdir}" -i "{input}" -o "{outputdir}" --run 1'.format(**kwargs))
else:
log.ODM_WARNING("%s does not exist, no point cloud will be built." % scan_json)
# Cleanup
if os.path.exists(tmpdir):
shutil.rmtree(tmpdir)

Wyświetl plik

@ -50,7 +50,7 @@ class GeoFile:
horizontal_accuracy, vertical_accuracy,
extras)
else:
logger.warning("Malformed geo line: %s" % line)
log.ODM_WARNING("Malformed geo line: %s" % line)
def get_entry(self, filename):
return self.entries.get(filename)

Wyświetl plik

@ -1,7 +1,16 @@
from opendm import dls
import math
import re
import cv2
import os
from opendm import dls
import numpy as np
from opendm import log
from opendm.concurrency import parallel_map
from opensfm.io import imread
from skimage import exposure
from skimage.morphology import disk
from skimage.filters import rank, gaussian
# Loosely based on https://github.com/micasense/imageprocessing/blob/master/micasense/utils.py
@ -150,4 +159,342 @@ def compute_irradiance(photo, use_sun_sensor=True):
elif use_sun_sensor:
log.ODM_WARNING("No sun sensor values found for %s" % photo.filename)
return 1.0
return 1.0
def get_photos_by_band(multi_camera, user_band_name):
band_name = get_primary_band_name(multi_camera, user_band_name)
for band in multi_camera:
if band['name'] == band_name:
return band['photos']
def get_primary_band_name(multi_camera, user_band_name):
if len(multi_camera) < 1:
raise Exception("Invalid multi_camera list")
# multi_camera is already sorted by band_index
if user_band_name == "auto":
return multi_camera[0]['name']
for band in multi_camera:
if band['name'].lower() == user_band_name.lower():
return band['name']
band_name_fallback = multi_camera[0]['name']
log.ODM_WARNING("Cannot find band name \"%s\", will use \"%s\" instead" % (user_band_name, band_name_fallback))
return band_name_fallback
def compute_band_maps(multi_camera, primary_band):
"""
Computes maps of:
- { photo filename --> associated primary band photo } (s2p)
- { primary band filename --> list of associated secondary band photos } (p2s)
by looking at capture time or filenames as a fallback
"""
band_name = get_primary_band_name(multi_camera, primary_band)
primary_band_photos = None
for band in multi_camera:
if band['name'] == band_name:
primary_band_photos = band['photos']
break
# Try using capture time as the grouping factor
try:
capture_time_map = {}
s2p = {}
p2s = {}
for p in primary_band_photos:
t = p.get_utc_time()
if t is None:
raise Exception("Cannot use capture time (no information in %s)" % p.filename)
# Should be unique across primary band
if capture_time_map.get(t) is not None:
raise Exception("Unreliable capture time detected (duplicate)")
capture_time_map[t] = p
for band in multi_camera:
photos = band['photos']
for p in photos:
t = p.get_utc_time()
if t is None:
raise Exception("Cannot use capture time (no information in %s)" % p.filename)
# Should match the primary band
if capture_time_map.get(t) is None:
raise Exception("Unreliable capture time detected (no primary band match)")
s2p[p.filename] = capture_time_map[t]
if band['name'] != band_name:
p2s.setdefault(capture_time_map[t].filename, []).append(p)
return s2p, p2s
except Exception as e:
# Fallback on filename conventions
log.ODM_WARNING("%s, will use filenames instead" % str(e))
filename_map = {}
s2p = {}
p2s = {}
file_regex = re.compile(r"^(.+)[-_]\w+(\.[A-Za-z]{3,4})$")
for p in primary_band_photos:
filename_without_band = re.sub(file_regex, "\\1\\2", p.filename)
# Quick check
if filename_without_band == p.filename:
raise Exception("Cannot match bands by filename on %s, make sure to name your files [filename]_band[.ext] uniformly." % p.filename)
filename_map[filename_without_band] = p
for band in multi_camera:
photos = band['photos']
for p in photos:
filename_without_band = re.sub(file_regex, "\\1\\2", p.filename)
# Quick check
if filename_without_band == p.filename:
raise Exception("Cannot match bands by filename on %s, make sure to name your files [filename]_band[.ext] uniformly." % p.filename)
s2p[p.filename] = filename_map[filename_without_band]
if band['name'] != band_name:
p2s.setdefault(filename_map[filename_without_band].filename, []).append(p)
return s2p, p2s
def compute_alignment_matrices(multi_camera, primary_band_name, images_path, s2p, p2s, max_concurrency=1, max_samples=30):
log.ODM_INFO("Computing band alignment")
alignment_info = {}
# For each secondary band
for band in multi_camera:
if band['name'] != primary_band_name:
matrices = []
def parallel_compute_homography(p):
try:
if len(matrices) >= max_samples:
# log.ODM_INFO("Got enough samples for %s (%s)" % (band['name'], max_samples))
return
# Find good matrix candidates for alignment
primary_band_photo = s2p.get(p['filename'])
if primary_band_photo is None:
log.ODM_WARNING("Cannot find primary band photo for %s" % p['filename'])
return
warp_matrix, dimension, algo = compute_homography(os.path.join(images_path, p['filename']),
os.path.join(images_path, primary_band_photo.filename))
if warp_matrix is not None:
log.ODM_INFO("%s --> %s good match" % (p['filename'], primary_band_photo.filename))
matrices.append({
'warp_matrix': warp_matrix,
'eigvals': np.linalg.eigvals(warp_matrix),
'dimension': dimension,
'algo': algo
})
else:
log.ODM_INFO("%s --> %s cannot be matched" % (p['filename'], primary_band_photo.filename))
except Exception as e:
log.ODM_WARNING("Failed to compute homography for %s: %s" % (p['filename'], str(e)))
parallel_map(parallel_compute_homography, [{'filename': p.filename} for p in band['photos']], max_concurrency, single_thread_fallback=False)
# Choose winning algorithm (doesn't seem to yield improvements)
# feat_count = 0
# ecc_count = 0
# for m in matrices:
# if m['algo'] == 'feat':
# feat_count += 1
# if m['algo'] == 'ecc':
# ecc_count += 1
# algo = 'feat' if feat_count >= ecc_count else 'ecc'
# log.ODM_INFO("Feat: %s | ECC: %s | Winner: %s" % (feat_count, ecc_count, algo))
# matrices = [m for m in matrices if m['algo'] == algo]
# Find the matrix that has the most common eigvals
# among all matrices. That should be the "best" alignment.
for m1 in matrices:
acc = np.array([0.0,0.0,0.0])
e = m1['eigvals']
for m2 in matrices:
acc += abs(e - m2['eigvals'])
m1['score'] = acc.sum()
# Sort
matrices.sort(key=lambda x: x['score'], reverse=False)
if len(matrices) > 0:
alignment_info[band['name']] = matrices[0]
log.ODM_INFO("%s band will be aligned using warp matrix %s (score: %s)" % (band['name'], matrices[0]['warp_matrix'], matrices[0]['score']))
else:
log.ODM_WARNING("Cannot find alignment matrix for band %s, The band will likely be misaligned!" % band['name'])
return alignment_info
def compute_homography(image_filename, align_image_filename):
try:
# Convert images to grayscale if needed
image = imread(image_filename, unchanged=True, anydepth=True)
if image.shape[2] == 3:
image_gray = to_8bit(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
else:
image_gray = to_8bit(image[:,:,0])
align_image = imread(align_image_filename, unchanged=True, anydepth=True)
if align_image.shape[2] == 3:
align_image_gray = to_8bit(cv2.cvtColor(align_image, cv2.COLOR_BGR2GRAY))
else:
align_image_gray = to_8bit(align_image[:,:,0])
def compute_using(algorithm):
h = algorithm(image_gray, align_image_gray)
if h is None:
return None, (None, None)
det = np.linalg.det(h)
# Check #1 homography's determinant will not be close to zero
if abs(det) < 0.25:
return None, (None, None)
# Check #2 the ratio of the first-to-last singular value is sane (not too high)
svd = np.linalg.svd(h, compute_uv=False)
if svd[-1] == 0:
return None, (None, None)
ratio = svd[0] / svd[-1]
if ratio > 100000:
return None, (None, None)
return h, (align_image_gray.shape[1], align_image_gray.shape[0])
algo = 'feat'
result = compute_using(find_features_homography)
if result[0] is None:
algo = 'ecc'
log.ODM_INFO("Can't use features matching, will use ECC (this might take a bit)")
result = compute_using(find_ecc_homography)
if result[0] is None:
algo = None
warp_matrix, dimension = result
return warp_matrix, dimension, algo
except Exception as e:
log.ODM_WARNING("Compute homography: %s" % str(e))
return None, None, (None, None)
def find_ecc_homography(image_gray, align_image_gray, number_of_iterations=2500, termination_eps=1e-9):
image_gray = to_8bit(gradient(gaussian(image_gray)))
align_image_gray = to_8bit(gradient(gaussian(align_image_gray)))
# Define the motion model
warp_matrix = np.eye(3, 3, dtype=np.float32)
# Define termination criteria
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
number_of_iterations, termination_eps)
_, warp_matrix = cv2.findTransformECC (image_gray,align_image_gray,warp_matrix, cv2.MOTION_HOMOGRAPHY, criteria, inputMask=None, gaussFiltSize=9)
return warp_matrix
def find_features_homography(image_gray, align_image_gray, feature_retention=0.25):
# Detect SIFT features and compute descriptors.
detector = cv2.SIFT_create(edgeThreshold=10, contrastThreshold=0.1)
kp_image, desc_image = detector.detectAndCompute(image_gray, None)
kp_align_image, desc_align_image = detector.detectAndCompute(align_image_gray, None)
# Match
bf = cv2.BFMatcher(cv2.NORM_L1,crossCheck=True)
matches = bf.match(desc_image, desc_align_image)
# Sort by score
matches.sort(key=lambda x: x.distance, reverse=False)
# Remove bad matches
num_good_matches = int(len(matches) * feature_retention)
matches = matches[:num_good_matches]
# Debug
# imMatches = cv2.drawMatches(im1, kp_image, im2, kp_align_image, matches, None)
# cv2.imwrite("matches.jpg", imMatches)
# Extract location of good matches
points_image = np.zeros((len(matches), 2), dtype=np.float32)
points_align_image = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points_image[i, :] = kp_image[match.queryIdx].pt
points_align_image[i, :] = kp_align_image[match.trainIdx].pt
# Find homography
h, _ = cv2.findHomography(points_image, points_align_image, cv2.RANSAC)
return h
def gradient(im, ksize=5):
im = local_normalize(im)
grad_x = cv2.Sobel(im,cv2.CV_32F,1,0,ksize=ksize)
grad_y = cv2.Sobel(im,cv2.CV_32F,0,1,ksize=ksize)
grad = cv2.addWeighted(np.absolute(grad_x), 0.5, np.absolute(grad_y), 0.5, 0)
return grad
def local_normalize(im):
width, _ = im.shape
disksize = int(width/5)
if disksize % 2 == 0:
disksize = disksize + 1
selem = disk(disksize)
im = rank.equalize(im, selem=selem)
return im
def align_image(image, warp_matrix, dimension):
if warp_matrix.shape == (3, 3):
return cv2.warpPerspective(image, warp_matrix, dimension)
else:
return cv2.warpAffine(image, warp_matrix, dimension)
def to_8bit(image):
if image.dtype == np.uint8:
return image
# Convert to 8bit
try:
data_range = np.iinfo(image.dtype)
value_range = float(data_range.max) - float(data_range.min)
except ValueError:
# For floats use the actual range of the image values
value_range = float(image.max()) - float(image.min())
image = image.astype(np.float32)
image *= 255.0 / value_range
np.around(image, out=image)
image[image > 255] = 255
image[image < 0] = 0
image = image.astype(np.uint8)
return image

41
opendm/nvm.py 100644
Wyświetl plik

@ -0,0 +1,41 @@
import os
from opendm import log
def replace_nvm_images(src_nvm_file, img_map, dst_nvm_file):
"""
Create a new NVM file from an existing NVM file
replacing the image references based on img_map
where img_map is a dict { "old_image" --> "new_image" } (filename only).
The function does not write the points information (they are discarded)
"""
with open(src_nvm_file) as f:
lines = list(map(str.strip, f.read().split("\n")))
# Quick check
if len(lines) < 3 or lines[0] != "NVM_V3" or lines[1].strip() != "":
raise Exception("%s does not seem to be a valid NVM file" % src_nvm_file)
num_images = int(lines[2])
entries = []
for l in lines[3:3+num_images]:
image_path, *p = l.split(" ")
dir_name = os.path.dirname(image_path)
file_name = os.path.basename(image_path)
new_filename = img_map.get(file_name)
if new_filename is not None:
entries.append("%s %s" % (os.path.join(dir_name, new_filename), " ".join(p)))
else:
log.ODM_WARNING("Cannot find %s in image map for %s" % (file_name, dst_nvm_file))
if num_images != len(entries):
raise Exception("Cannot write %s, not all band images have been matched" % dst_nvm_file)
with open(dst_nvm_file, "w") as f:
f.write("NVM_V3\n\n%s\n" % len(entries))
f.write("\n".join(entries))
f.write("\n\n0\n0\n\n0")

Wyświetl plik

@ -15,6 +15,7 @@ from opensfm.large import metadataset
from opensfm.large import tools
from opensfm.actions import undistort
from opensfm.dataset import DataSet
from opendm.multispectral import get_photos_by_band
class OSFMContext:
def __init__(self, opensfm_project_path):
@ -55,7 +56,7 @@ class OSFMContext:
exit(1)
def setup(self, args, images_path, photos, reconstruction, append_config = [], rerun=False):
def setup(self, args, images_path, reconstruction, append_config = [], rerun=False):
"""
Setup a OpenSfM project
"""
@ -67,7 +68,15 @@ class OSFMContext:
list_path = os.path.join(self.opensfm_project_path, 'image_list.txt')
if not io.file_exists(list_path) or rerun:
if reconstruction.multi_camera:
photos = get_photos_by_band(reconstruction.multi_camera, args.primary_band)
if len(photos) < 1:
raise Exception("Not enough images in selected band %s" % args.primary_band.lower())
log.ODM_INFO("Reconstruction will use %s images from %s band" % (len(photos), args.primary_band.lower()))
else:
photos = reconstruction.photos
# create file list
has_alt = True
has_gps = False
@ -77,6 +86,7 @@ class OSFMContext:
has_alt = False
if photo.latitude is not None and photo.longitude is not None:
has_gps = True
fout.write('%s\n' % os.path.join(images_path, photo.filename))
# check for image_groups.txt (split-merge)
@ -95,16 +105,9 @@ class OSFMContext:
except Exception as e:
log.ODM_WARNING("Cannot set camera_models_overrides.json: %s" % str(e))
use_bow = False
use_bow = args.matcher_type == "bow"
feature_type = "SIFT"
matcher_neighbors = args.matcher_neighbors
if matcher_neighbors != 0 and reconstruction.multi_camera is not None:
matcher_neighbors *= len(reconstruction.multi_camera)
log.ODM_INFO("Increasing matcher neighbors to %s to accomodate multi-camera setup" % matcher_neighbors)
log.ODM_INFO("Multi-camera setup, using BOW matching")
use_bow = True
# GPSDOP override if we have GPS accuracy information (such as RTK)
if 'gps_accuracy_is_set' in args:
log.ODM_INFO("Forcing GPS DOP to %s for all images" % args.gps_accuracy)
@ -178,7 +181,7 @@ class OSFMContext:
"feature_process_size: %s" % feature_process_size,
"feature_min_frames: %s" % args.min_num_features,
"processes: %s" % args.max_concurrency,
"matching_gps_neighbors: %s" % matcher_neighbors,
"matching_gps_neighbors: %s" % args.matcher_neighbors,
"matching_gps_distance: %s" % args.matcher_distance,
"depthmap_method: %s" % args.opensfm_depthmap_method,
"depthmap_resolution: %s" % depthmap_resolution,
@ -188,8 +191,7 @@ class OSFMContext:
"undistorted_image_format: tif",
"bundle_outlier_filtering_type: AUTO",
"align_orientation_prior: vertical",
"triangulation_type: ROBUST",
"bundle_common_position_constraints: %s" % ('no' if reconstruction.multi_camera is None else 'yes'),
"triangulation_type: ROBUST"
]
if args.camera_lens != 'auto':
@ -313,15 +315,65 @@ class OSFMContext:
else:
log.ODM_INFO("Already extracted cameras")
def convert_and_undistort(self, rerun=False, imageFilter=None):
def convert_and_undistort(self, rerun=False, imageFilter=None, image_list=None, runId="nominal"):
log.ODM_INFO("Undistorting %s ..." % self.opensfm_project_path)
undistorted_images_path = self.path("undistorted", "images")
done_flag_file = self.path("undistorted", "%s_done.txt" % runId)
if not io.dir_exists(undistorted_images_path) or rerun:
undistort.run_dataset(DataSet(self.opensfm_project_path), "reconstruction.json",
if not io.file_exists(done_flag_file) or rerun:
ds = DataSet(self.opensfm_project_path)
if image_list is not None:
ds._set_image_list(image_list)
undistort.run_dataset(ds, "reconstruction.json",
0, None, "undistorted", imageFilter)
self.touch(done_flag_file)
else:
log.ODM_WARNING("Found an undistorted directory in %s" % undistorted_images_path)
log.ODM_WARNING("Already undistorted (%s)" % runId)
def restore_reconstruction_backup(self):
if os.path.exists(self.recon_backup_file()):
# This time export the actual reconstruction.json
# (containing only the primary band)
if os.path.exists(self.recon_file()):
os.remove(self.recon_file())
os.rename(self.recon_backup_file(), self.recon_file())
log.ODM_INFO("Restored reconstruction.json")
def backup_reconstruction(self):
if os.path.exists(self.recon_backup_file()):
os.remove(self.recon_backup_file())
log.ODM_INFO("Backing up reconstruction")
shutil.copyfile(self.recon_file(), self.recon_backup_file())
def recon_backup_file(self):
return self.path("reconstruction.backup.json")
def recon_file(self):
return self.path("reconstruction.json")
def add_shots_to_reconstruction(self, p2s):
with open(self.recon_file()) as f:
reconstruction = json.loads(f.read())
# Augment reconstruction.json
for recon in reconstruction:
shots = recon['shots']
sids = list(shots)
for shot_id in sids:
secondary_photos = p2s.get(shot_id)
if secondary_photos is None:
log.ODM_WARNING("Cannot find secondary photos for %s" % shot_id)
continue
for p in secondary_photos:
shots[p.filename] = shots[shot_id]
with open(self.recon_file(), 'w') as f:
f.write(json.dumps(reconstruction))
def update_config(self, cfg_dict):

Wyświetl plik

@ -19,7 +19,7 @@ RUN rm -rf \
/code/SuperBuild/build/opencv \
/code/SuperBuild/download \
/code/SuperBuild/src/ceres \
/code/SuperBuild/src/entwine \
/code/SuperBuild/src/untwine \
/code/SuperBuild/src/gflags \
/code/SuperBuild/src/hexer \
/code/SuperBuild/src/lastools \

Wyświetl plik

@ -6,10 +6,8 @@ cryptography==3.2.1
edt==2.0.2
ExifRead==2.3.2
Fiona==1.8.17
gpxpy==1.4.2
joblib==0.17.0
laspy==1.7.0
loky==2.9.0
lxml==4.6.1
matplotlib==3.3.3
networkx==2.5
@ -25,6 +23,7 @@ PyYAML==5.1
rasterio==1.1.8
repoze.lru==0.7
scikit-learn==0.23.2
scikit-image==0.17.2
scipy==1.5.4
xmltodict==0.12.0

Wyświetl plik

@ -202,7 +202,7 @@ parts:
- -odm/SuperBuild/build/openmvs
- -odm/SuperBuild/download
- -odm/SuperBuild/src/ceres
- -odm/SuperBuild/src/entwine
- -odm/SuperBuild/src/untwine
- -odm/SuperBuild/src/gflags
- -odm/SuperBuild/src/hexer
- -odm/SuperBuild/src/lastools

Wyświetl plik

@ -5,6 +5,7 @@ from opendm import io
from opendm import system
from opendm import context
from opendm import types
from opendm.multispectral import get_primary_band_name
class ODMMvsTexStage(types.ODM_Stage):
def process(self, args, outputs):
@ -24,7 +25,8 @@ class ODMMvsTexStage(types.ODM_Stage):
'out_dir': os.path.join(tree.odm_texturing, subdir),
'model': tree.odm_mesh,
'nadir': False,
'nvm_file': nvm_file
'nvm_file': nvm_file,
'labeling_file': os.path.join(tree.odm_texturing, "odm_textured_model_labeling.vec") if subdir else None
}]
if not args.use_3dmesh:
@ -32,12 +34,14 @@ class ODMMvsTexStage(types.ODM_Stage):
'out_dir': os.path.join(tree.odm_25dtexturing, subdir),
'model': tree.odm_25dmesh,
'nadir': True,
'nvm_file': nvm_file
'nvm_file': nvm_file,
'labeling_file': os.path.join(tree.odm_25dtexturing, "odm_textured_model_labeling.vec") if subdir else None
}]
if reconstruction.multi_camera:
for band in reconstruction.multi_camera:
primary = band == reconstruction.multi_camera[0]
primary = band['name'] == get_primary_band_name(reconstruction.multi_camera, args.primary_band)
nvm_file = os.path.join(tree.opensfm, "undistorted", "reconstruction_%s.nvm" % band['name'].lower())
add_run(nvm_file, primary, band['name'].lower())
else:
@ -57,23 +61,14 @@ class ODMMvsTexStage(types.ODM_Stage):
% odm_textured_model_obj)
# Format arguments to fit Mvs-Texturing app
skipGeometricVisibilityTest = ""
skipGlobalSeamLeveling = ""
skipLocalSeamLeveling = ""
skipHoleFilling = ""
keepUnseenFaces = ""
nadir = ""
if (self.params.get('skip_vis_test')):
skipGeometricVisibilityTest = "--skip_geometric_visibility_test"
if (self.params.get('skip_glob_seam_leveling')):
skipGlobalSeamLeveling = "--skip_global_seam_leveling"
if (self.params.get('skip_loc_seam_leveling')):
skipLocalSeamLeveling = "--skip_local_seam_leveling"
if (self.params.get('skip_hole_fill')):
skipHoleFilling = "--skip_hole_filling"
if (self.params.get('keep_unseen_faces')):
keepUnseenFaces = "--keep_unseen_faces"
if (r['nadir']):
nadir = '--nadir_mode'
@ -84,14 +79,13 @@ class ODMMvsTexStage(types.ODM_Stage):
'model': r['model'],
'dataTerm': self.params.get('data_term'),
'outlierRemovalType': self.params.get('outlier_rem_type'),
'skipGeometricVisibilityTest': skipGeometricVisibilityTest,
'skipGlobalSeamLeveling': skipGlobalSeamLeveling,
'skipLocalSeamLeveling': skipLocalSeamLeveling,
'skipHoleFilling': skipHoleFilling,
'keepUnseenFaces': keepUnseenFaces,
'toneMapping': self.params.get('tone_mapping'),
'nadirMode': nadir,
'nvm_file': r['nvm_file']
'nvm_file': r['nvm_file'],
'intermediate': '--no_intermediate_results' if (r['labeling_file'] or not reconstruction.multi_camera) else '',
'labelingFile': '-L "%s"' % r['labeling_file'] if r['labeling_file'] else ''
}
mvs_tmp_dir = os.path.join(r['out_dir'], 'tmp')
@ -105,21 +99,11 @@ class ODMMvsTexStage(types.ODM_Stage):
system.run('{bin} {nvm_file} {model} {out_dir} '
'-d {dataTerm} -o {outlierRemovalType} '
'-t {toneMapping} '
'{skipGeometricVisibilityTest} '
'{intermediate} '
'{skipGlobalSeamLeveling} '
'{skipLocalSeamLeveling} '
'{skipHoleFilling} '
'{keepUnseenFaces} '
'{nadirMode}'.format(**kwargs))
if args.optimize_disk_space:
cleanup_files = [
os.path.join(r['out_dir'], "odm_textured_model_data_costs.spt"),
os.path.join(r['out_dir'], "odm_textured_model_labeling.vec"),
]
for f in cleanup_files:
if io.file_exists(f):
os.remove(f)
'{nadirMode} '
'{labelingFile} '.format(**kwargs))
progress += progress_per_run
self.update_progress(progress)

Wyświetl plik

@ -46,11 +46,8 @@ class ODMApp:
texturing = ODMMvsTexStage('mvs_texturing', args, progress=70.0,
data_term=args.texturing_data_term,
outlier_rem_type=args.texturing_outlier_removal_type,
skip_vis_test=args.texturing_skip_visibility_test,
skip_glob_seam_leveling=args.texturing_skip_global_seam_leveling,
skip_loc_seam_leveling=args.texturing_skip_local_seam_leveling,
skip_hole_fill=args.texturing_skip_hole_filling,
keep_unseen_faces=args.texturing_keep_unseen_faces,
tone_mapping=args.texturing_tone_mapping)
georeferencing = ODMGeoreferencingStage('odm_georeferencing', args, progress=80.0,
gcp_file=args.gcp,

Wyświetl plik

@ -9,6 +9,7 @@ from opendm import system
from opendm import context
from opendm.cropper import Cropper
from opendm import point_cloud
from opendm.multispectral import get_primary_band_name
class ODMGeoreferencingStage(types.ODM_Stage):
def process(self, args, outputs):
@ -45,7 +46,7 @@ class ODMGeoreferencingStage(types.ODM_Stage):
if reconstruction.multi_camera:
for band in reconstruction.multi_camera:
primary = band == reconstruction.multi_camera[0]
primary = band['name'] == get_primary_band_name(reconstruction.multi_camera, args.primary_band)
add_run(primary, band['name'].lower())
else:
add_run()
@ -122,15 +123,14 @@ class ODMGeoreferencingStage(types.ODM_Stage):
if args.fast_orthophoto:
decimation_step = 10
elif args.use_opensfm_dense:
decimation_step = 40
else:
decimation_step = 90
decimation_step = 40
# More aggressive decimation for large datasets
if not args.fast_orthophoto:
decimation_step *= int(len(reconstruction.photos) / 1000) + 1
decimation_step = min(decimation_step, 95)
try:
cropper.create_bounds_gpkg(tree.odm_georeferencing_model_laz, args.crop,
decimation_step=decimation_step)

Wyświetl plik

@ -11,6 +11,7 @@ from opendm.concurrency import get_max_memory
from opendm.cutline import compute_cutline
from pipes import quote
from opendm import pseudogeo
from opendm.multispectral import get_primary_band_name
class ODMOrthoPhotoStage(types.ODM_Stage):
def process(self, args, outputs):
@ -72,7 +73,7 @@ class ODMOrthoPhotoStage(types.ODM_Stage):
if reconstruction.multi_camera:
for band in reconstruction.multi_camera:
primary = band == reconstruction.multi_camera[0]
primary = band['name'] == get_primary_band_name(reconstruction.multi_camera, args.primary_band)
subdir = ""
if not primary:
subdir = band['name'].lower()

Wyświetl plik

@ -8,6 +8,7 @@ from opendm import point_cloud
from opendm import types
from opendm.utils import get_depthmap_resolution
from opendm.osfm import OSFMContext
from opendm.multispectral import get_primary_band_name
class ODMOpenMVSStage(types.ODM_Stage):
def process(self, args, outputs):
@ -28,11 +29,6 @@ class ODMOpenMVSStage(types.ODM_Stage):
# export reconstruction from opensfm
octx = OSFMContext(tree.opensfm)
cmd = 'export_openmvs'
if reconstruction.multi_camera:
# Export only the primary band
primary = reconstruction.multi_camera[0]
image_list = os.path.join(tree.opensfm, "image_list_%s.txt" % primary['name'].lower())
cmd += ' --image_list "%s"' % image_list
octx.run(cmd)
self.update_progress(10)

Wyświetl plik

@ -13,6 +13,7 @@ from opendm import types
from opendm.utils import get_depthmap_resolution
from opendm.osfm import OSFMContext
from opendm import multispectral
from opendm import nvm
class ODMOpenSfMStage(types.ODM_Stage):
def process(self, args, outputs):
@ -25,7 +26,7 @@ class ODMOpenSfMStage(types.ODM_Stage):
exit(1)
octx = OSFMContext(tree.opensfm)
octx.setup(args, tree.dataset_raw, photos, reconstruction=reconstruction, rerun=self.rerun())
octx.setup(args, tree.dataset_raw, reconstruction=reconstruction, rerun=self.rerun())
octx.extract_metadata(self.rerun())
self.update_progress(20)
octx.feature_matching(self.rerun())
@ -48,13 +49,6 @@ class ODMOpenSfMStage(types.ODM_Stage):
self.next_stage = None
return
if args.fast_orthophoto:
output_file = octx.path('reconstruction.ply')
elif args.use_opensfm_dense:
output_file = tree.opensfm_model
else:
output_file = tree.opensfm_reconstruction
updated_config_flag_file = octx.path('updated_config.txt')
# Make sure it's capped by the depthmap-resolution arg,
@ -68,56 +62,122 @@ class ODMOpenSfMStage(types.ODM_Stage):
octx.update_config({'undistorted_image_max_size': outputs['undist_image_max_size']})
octx.touch(updated_config_flag_file)
# These will be used for texturing / MVS
if args.radiometric_calibration == "none":
octx.convert_and_undistort(self.rerun())
else:
def radiometric_calibrate(shot_id, image):
photo = reconstruction.get_photo(shot_id)
return multispectral.dn_to_reflectance(photo, image, use_sun_sensor=args.radiometric_calibration=="camera+sun")
# Undistorted images will be used for texturing / MVS
octx.convert_and_undistort(self.rerun(), radiometric_calibrate)
alignment_info = None
primary_band_name = None
undistort_pipeline = []
def undistort_callback(shot_id, image):
for func in undistort_pipeline:
image = func(shot_id, image)
return image
def radiometric_calibrate(shot_id, image):
photo = reconstruction.get_photo(shot_id)
return multispectral.dn_to_reflectance(photo, image, use_sun_sensor=args.radiometric_calibration=="camera+sun")
def align_to_primary_band(shot_id, image):
photo = reconstruction.get_photo(shot_id)
# No need to align primary
if photo.band_name == primary_band_name:
return image
ainfo = alignment_info.get(photo.band_name)
if ainfo is not None:
return multispectral.align_image(image, ainfo['warp_matrix'], ainfo['dimension'])
else:
log.ODM_WARNING("Cannot align %s, no alignment matrix could be computed. Band alignment quality might be affected." % (shot_id))
return image
if args.radiometric_calibration != "none":
undistort_pipeline.append(radiometric_calibrate)
image_list_override = None
if reconstruction.multi_camera:
# Undistort only secondary bands
image_list_override = [os.path.join(tree.dataset_raw, p.filename) for p in photos] # if p.band_name.lower() != primary_band_name.lower()
# We backup the original reconstruction.json, tracks.csv
# then we augment them by duplicating the primary band
# camera shots with each band, so that exports, undistortion,
# etc. include all bands
# We finally restore the original files later
added_shots_file = octx.path('added_shots_done.txt')
if not io.file_exists(added_shots_file) or self.rerun():
primary_band_name = multispectral.get_primary_band_name(reconstruction.multi_camera, args.primary_band)
s2p, p2s = multispectral.compute_band_maps(reconstruction.multi_camera, primary_band_name)
alignment_info = multispectral.compute_alignment_matrices(reconstruction.multi_camera, primary_band_name, tree.dataset_raw, s2p, p2s, max_concurrency=args.max_concurrency)
log.ODM_INFO("Adding shots to reconstruction")
octx.backup_reconstruction()
octx.add_shots_to_reconstruction(p2s)
octx.touch(added_shots_file)
undistort_pipeline.append(align_to_primary_band)
octx.convert_and_undistort(self.rerun(), undistort_callback, image_list_override)
self.update_progress(80)
if reconstruction.multi_camera:
# Dump band image lists
log.ODM_INFO("Multiple bands found")
for band in reconstruction.multi_camera:
log.ODM_INFO("Exporting %s band" % band['name'])
image_list_file = octx.path("image_list_%s.txt" % band['name'].lower())
octx.restore_reconstruction_backup()
if not io.file_exists(image_list_file) or self.rerun():
with open(image_list_file, "w") as f:
f.write("\n".join([p.filename for p in band['photos']]))
log.ODM_INFO("Wrote %s" % image_list_file)
else:
log.ODM_WARNING("Found a valid image list in %s for %s band" % (image_list_file, band['name']))
nvm_file = octx.path("undistorted", "reconstruction_%s.nvm" % band['name'].lower())
if not io.file_exists(nvm_file) or self.rerun():
octx.run('export_visualsfm --points --image_list "%s"' % image_list_file)
os.rename(tree.opensfm_reconstruction_nvm, nvm_file)
else:
log.ODM_WARNING("Found a valid NVM file in %s for %s band" % (nvm_file, band['name']))
# Undistort primary band and write undistorted
# reconstruction.json, tracks.csv
octx.convert_and_undistort(self.rerun(), undistort_callback, runId='primary')
if not io.file_exists(tree.opensfm_reconstruction_nvm) or self.rerun():
octx.run('export_visualsfm --points')
else:
log.ODM_WARNING('Found a valid OpenSfM NVM reconstruction file in: %s' %
tree.opensfm_reconstruction_nvm)
if reconstruction.multi_camera:
log.ODM_INFO("Multiple bands found")
# Write NVM files for the various bands
for band in reconstruction.multi_camera:
nvm_file = octx.path("undistorted", "reconstruction_%s.nvm" % band['name'].lower())
img_map = {}
for fname in p2s:
# Primary band maps to itself
if band['name'] == primary_band_name:
img_map[fname + '.tif'] = fname + '.tif'
else:
band_filename = next((p.filename for p in p2s[fname] if p.band_name == band['name']), None)
if band_filename is not None:
img_map[fname + '.tif'] = band_filename + '.tif'
else:
log.ODM_WARNING("Cannot find %s band equivalent for %s" % (band, fname))
nvm.replace_nvm_images(tree.opensfm_reconstruction_nvm, img_map, nvm_file)
self.update_progress(85)
# Skip dense reconstruction if necessary and export
# sparse reconstruction instead
if args.fast_orthophoto:
output_file = octx.path('reconstruction.ply')
if not io.file_exists(output_file) or self.rerun():
octx.run('export_ply --no-cameras')
else:
log.ODM_WARNING("Found a valid PLY reconstruction in %s" % output_file)
elif args.use_opensfm_dense:
output_file = tree.opensfm_model
if not io.file_exists(output_file) or self.rerun():
octx.run('compute_depthmaps')
else:
@ -132,6 +192,9 @@ class ODMOpenSfMStage(types.ODM_Stage):
if args.optimize_disk_space:
os.remove(octx.path("tracks.csv"))
if io.file_exists(octx.recon_backup_file()):
os.remove(octx.recon_backup_file())
if io.dir_exists(octx.path("undistorted", "depthmaps")):
files = glob.glob(octx.path("undistorted", "depthmaps", "*.npz"))
for f in files:

Wyświetl plik

@ -50,7 +50,7 @@ class ODMSplitStage(types.ODM_Stage):
"submodel_overlap: %s" % args.split_overlap,
]
octx.setup(args, tree.dataset_raw, photos, reconstruction=reconstruction, append_config=config, rerun=self.rerun())
octx.setup(args, tree.dataset_raw, reconstruction=reconstruction, append_config=config, rerun=self.rerun())
octx.extract_metadata(self.rerun())
self.update_progress(5)

Wyświetl plik

@ -11,7 +11,7 @@ if [ "$1" = "--setup" ]; then
bash configure.sh reinstall
touch .setupdevenv
apt update && apt install -y vim
apt update && apt install -y vim git
chown -R $3:$4 /code
chown -R $3:$4 /var/www
fi
@ -22,6 +22,7 @@ if [ "$1" = "--setup" ]; then
echo "$2:x:$4:" >> /etc/group
echo "Adding $2 to /etc/shadow"
echo "$2:x:14871::::::" >> /etc/shadow
echo "$2 ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers
echo "echo '' && echo '' && echo '' && echo '###################################' && echo 'ODM Dev Environment Ready. Hack on!' && echo '###################################' && echo '' && cd /code" > $HOME/.bashrc
# Install qt creator