OpenDroneMap-ODM/README.md

186 wiersze
9.2 KiB
Markdown
Czysty Zwykły widok Historia

# OpenDroneMap
![](https://raw.githubusercontent.com/OpenDroneMap/OpenDroneMap/master/img/odm_image.png)
What is it?
===========
OpenDroneMap is an open source toolkit for processing aerial drone imagery. Typical drones use simple point-and-shoot cameras, so the images from drones, while from a different perspective, are similar to any pictures taken from point-and-shoot cameras, i.e. non-metric imagery. OpenDroneMap turns those simple images into three dimensional geographic data that can be used in combination with other geographic datasets.
![](https://raw.githubusercontent.com/OpenDroneMap/OpenDroneMap/master/img/tol_ptcloud.png)
In a word, OpenDroneMap is a toolchain for processing raw civilian UAS imagery to other useful products. What kind of products?
1. Point Clouds
2. Digital Surface Models
3. Textured Digital Surface Models
4. Orthorectified Imagery
5. Classified Point Clouds
6. Digital Elevation Models
7. etc.
So far, it does Point Clouds, Digital Surface Models, Textured Digital Surface Models, and Orthorectified Imagery. Open Drone Map now includes state-of-the-art 3D reconstruction work by Michael Waechter, Nils Moehrle, and Michael Goesele. See their publication at http://www.gcc.tu-darmstadt.de/media/gcc/papers/Waechter-2014-LTB.pdf.
Users' mailing list: http://lists.osgeo.org/cgi-bin/mailman/listinfo/opendronemap-users
Developers' mailing list: http://lists.osgeo.org/cgi-bin/mailman/listinfo/opendronemap-dev
Overview video: https://www.youtube.com/watch?v=0UctfoeNB_Y
Developers
=================
Help improve our software!
[![Join the chat at https://gitter.im/OpenDroneMap/OpenDroneMap](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/OpenDroneMap/OpenDroneMap?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
1. Try to keep commits clean and simple
2. Submit a pull request with detailed changes and test results
Steps to get OpenDroneMap running:
==================================
(Requires Ubuntu 14.04 or later, see https://github.com/OpenDroneMap/odm_vagrant for running on Windows in a VM)
Support for Ubuntu 12.04 is currently BROKEN with the addition of OpenSfM and Ceres-Solver. We are working hard to get it working again in the future.
#### Building OpenDroneMap using git
cd path/to/odm/dir
git clone https://github.com/OpenDroneMap/OpenDroneMap.git .
export PYTHONPATH=$PYTHONPATH:`pwd`/SuperBuild/install/lib/python2.7/dist-packages:`pwd`/SuperBuild/src/opensfm
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:`pwd`/SuperBuild/install/lib
bash configure.sh
mkdir build && cd build && cmake .. && make && cd ..
For Ubuntu 15.10 users, this will help you get running:
sudo apt-get install python-xmltodict
sudo ln -s /usr/lib/x86_64-linux-gnu/libproj.so.9 /usr/lib/libproj.so
#### Running OpenDroneMap
First you need a set of images, which may or may not be georeferenced. There are two ways OpenDroneMap can understand geographic coordinates. First, the images can be geotagged in their EXIF data. This is the default. Alternatively, you can create a GCP file, [a process detailed here](https://github.com/OpenDroneMap/OpenDroneMap/wiki/2.-Running-OpenDroneMap#running-odm-with-ground-control)
Create a project folder and places your images in an "images" directory:
|-- /path/to/project/
|-- images/
|-- img-1234.jpg
|-- ...
Example data can be cloned from https://github.com/OpenDroneMap/odm_data
Then run:
python run.py --project-path /path/to/project
There are many options for tuning your project. See the [wiki](https://github.com/OpenDroneMap/OpenDroneMap/wiki/3.-Run-Time-Parameters) or run `python run.py -h`
<<<<<<< HEAD
##### Viewing Results
When the process finishes, the results will be organized as follows
=======
Long term, the aim is for the toolchain to also be able to optionally push to a variety of online data repositories, pushing hi-resolution aerials to [OpenAerialMap](https://openaerialmap.org/), point clouds to [OpenTopography](http://opentopography.org/), and pushing digital elevation models to an emerging global repository (yet to be named...). That leaves only digital surface model meshes and UV textured meshes with no global repository home.
>>>>>>> Update master to become default branch (#302)
|-- images/
|-- img-1234.jpg
|-- ...
|-- images_resize/
|-- img-1234.jpg
|-- ...
|-- opensfm/
|-- not much useful in here
|-- pmvs/
|-- recon0/
|-- models/
|-- option-0000.ply # Dense point cloud
|-- odm_meshing/
|-- odm_mesh.ply # A 3D mesh
|-- odm_meshing_log.txt # Output of the meshing task. May point out errors.
|-- odm_texturing/
|-- odm_textured_model.obj # Textured mesh
|-- odm_textured_model_geo.obj # Georeferenced textured mesh
|-- texture_N.jpg # Associated textured images used by the model
|-- odm_georeferencing/
|-- odm_georeferenced_model.ply # A georeferenced dense point cloud
|-- odm_georeferenced_model.ply.laz # LAZ format point cloud
|-- odm_georeferenced_model.csv # XYZ format point cloud
|-- odm_georeferencing_log.txt # Georeferencing log
|-- odm_georeferencing_utm_log.txt # Log for the extract_utm portion
|-- odm_georeferencing/
|-- odm_orthophoto.png # Orthophoto image (no coordinates)
|-- odm_orthophoto.tif # Orthophoto GeoTiff
|-- odm_orthophoto_log.txt # Log file
|-- gdal_translate_log.txt # Log for georeferencing the png file
Any file ending in .obj or .ply can be opened and viewed in [MeshLab](http://meshlab.sourceforge.net/) or similar software. That includes `pmvs/recon0/models/option-000.ply`, `odm_meshing/odm_mesh.ply`, `odm_texturing/odm_textured_model[_geo].obj`, or `odm_georeferencing/odm_georeferenced_model.ply`. Below is an example textured mesh:
![](https://raw.githubusercontent.com/alexhagiopol/OpenDroneMap/feature-better-docker/toledo_dataset_example_mesh.jpg)
You can also view the orthophoto GeoTIFF in QGIS or other mapping software:
![](https://raw.githubusercontent.com/OpenDroneMap/OpenDroneMap/master/img/bellus_map.png)
#### Build and Run Using Docker
OpenDroneMap is Dockerized, meaning you can use containerization to build and run it without manually performing the
installation procedure described above and - most importantly - without tampering with the libraries and packages already
installed on your machine. Docker software is free to install and use in this context. If you don't have it installed,
see the [Docker Ubuntu installation tutorial] (https://docs.docker.com/engine/installation/linux/ubuntulinux/) and follow the
instructions up until "Create a Docker group" inclusive. Once Docker is installed, an OpenDroneMap Docker image can be created
as follows:
git clone https://github.com/OpenDroneMap/OpenDroneMap.git
cd OpenDroneMap
docker build -t odm_image .
docker run -it --rm \
-v $(pwd)/images:/code/images \
-v $(pwd)/odm_orthophoto:/code/odm_orthophoto \
-v $(pwd)/odm_texturing:/code/odm_texturing \
--user odm_user
odm_image
Using this method, the containerized ODM will process the images in the OpenDroneMap/images directory and output results
to the odm_orthophoto and odm_texturing directories as described in the **Viewing Results** section. If you want to view other
results outside the Docer image simply add which directories you're interested in to the run command in the same pattern
established above. For example, if you're interested in the dense cloud results generated by PMVS and in the orthophoto,
simply use the following `docker run` command after building the image:
docker run -it --rm \
-v $(pwd)/images:/code/images \
-v $(pwd)/pmvs:/code/pmvs \
-v $(pwd)/odm_orthophoto:/code/odm_orthophoto \
--user odm_user
odm_image
Replace /absolute/path/to/your/images with an absolute path to the directory containing your project (where the images are)
To pass in custom parameters to the `run.py` script, simply pass it as arguments to the `docker run` command.
### Examples
Here are some other videos, which may be outdated:
- https://www.youtube.com/watch?v=7ZTufQkODLs (2015-01-30)
- https://www.youtube.com/watch?v=m0i4GQdfl8A (2015-03-15)
Now that texturing is in the code base, you can access the full textured meshes using MeshLab. Open MeshLab, choose `File:Import Mesh` and choose your textured mesh from a location similar to the following: `reconstruction-with-image-size-1200-results\odm_texturing\odm_textured_model.obj`
Long term, the aim is for the toolchain to also be able to optionally push to a variety of online data repositories, pushing hi-resolution aerials to [OpenAerialMap](http://opentopography.org/), point clouds to [OpenTopography](http://opentopography.org/), and pushing digital elevation models to an emerging global repository (yet to be named...). That leaves only digital surface model meshes and UV textured meshes with no global repository home.
---
Documentation:
==============
For documentation, please take a look at our [wiki](https://github.com/OpenDroneMap/OpenDroneMap/wiki).