MCUME/MCUME_teensy41/teensy800/cpu.c

2445 wiersze
54 KiB
C

/*
* cpu.c - 6502 CPU emulation
*
* Copyright (C) 1995-1998 David Firth
* Copyright (C) 1998-2005 Atari800 development team (see DOC/CREDITS)
*
* This file is part of the Atari800 emulator project which emulates
* the Atari 400, 800, 800XL, 130XE, and 5200 8-bit computers.
*
* Atari800 is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Atari800 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Atari800; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
Configuration symbols
=====================
Define CPU65C02 if you don't want 6502 JMP() bug emulation.
Define CYCLES_PER_OPCODE to update ANTIC_xpos in each opcode's emulation.
Define MONITOR_BREAK if you want code breakpoints and execution history.
Define MONITOR_BREAKPOINTS if you want user-defined breakpoints.
Define MONITOR_PROFILE if you want 6502 opcode profiling.
Define MONITOR_TRACE if you want the code to be disassembled while it is executed.
Define NO_GOTO if you compile with GCC, but want switch() rather than goto *.
Define NO_V_FLAG_VARIABLE to don't use local (static) variable V for the V flag.
Define PC_PTR to emulate 6502 Program Counter using UBYTE *.
Define PREFETCH_CODE to always fetch 2 bytes after the opcode.
Define WRAP_64K to correctly emulate instructions that wrap at 64K.
Define WRAP_ZPAGE to prevent incorrect access to the address 0x0100 in zeropage
indirect mode.
Limitations & Known bugs
========================
There is no emulation of the bug in the BRK instruction executed simultaneously
with another interrupt.
The 6502 emulation ignores memory attributes for instruction fetch.
This is because the instruction must come from either RAM or ROM.
A program that executes instructions from within hardware addresses will fail
since there is never any usable code there.
The 6502 emulation also ignores memory attributes for accesses to page 0 and page 1.
*/
#ifdef SKIP
#include "config.h"
#include <stdio.h>
#include <stdlib.h> /* exit() */
#include "cpu.h"
#ifdef ASAP /* external project, see http://asap.sf.net */
#include "asap_internal.h"
#else
#include "antic.h"
#include "atari.h"
#include "esc.h"
#include "memory.h"
#include "monitor.h"
#ifndef BASIC
#include "statesav.h"
#ifndef __PLUS
#include "ui.h"
#endif
#endif /* BASIC */
#endif /* ASAP */
#else
#include <stdio.h>
#include <stdlib.h> /* exit() */
#include "cpu.h"
#include "antic.h"
#include "memory.h"
#define ESC_Run(x)
#endif
/* For Atari Basic loader */
void (*CPU_rts_handler)(void) = NULL;
/* 6502 instruction profiling */
#ifdef MONITOR_PROFILE
int CPU_instruction_count[256];
#endif
/* Execution history */
#ifdef MONITOR_BREAK
UWORD CPU_remember_PC[CPU_REMEMBER_PC_STEPS];
UBYTE CPU_remember_op[CPU_REMEMBER_PC_STEPS][3];
unsigned int CPU_remember_PC_curpos = 0;
int CPU_remember_xpos[CPU_REMEMBER_PC_STEPS];
UWORD CPU_remember_JMP[CPU_REMEMBER_JMP_STEPS];
unsigned int CPU_remember_jmp_curpos = 0;
#define INC_RET_NESTING MONITOR_ret_nesting++
#else /* MONITOR_BREAK */
#define INC_RET_NESTING
#endif /* MONITOR_BREAK */
UBYTE CPU_cim_encountered = FALSE;
UBYTE CPU_IRQ;
#ifdef FALCON_CPUASM
#if defined(PAGED_MEM) || defined(PAGED_ATTRIB)
#error cpu_m68k.asm cannot work with paged memory/attributes
#endif
#if defined(MONITOR_BREAKPOINTS)
#error cpu_m68k.asm does not support user-defined breakpoints
#endif
#if defined(MONITOR_TRACE)
#error cpu_m68k.asm does not support disassembling the code while it is executed
#endif
#else /* FALCON_CPUASM */
/* Windows headers define it */
#undef ABSOLUTE
#ifndef __GNUC__
#define NO_GOTO
#endif
/* #define CYCLES_PER_OPCODE */
/* #define MONITOR_PROFILE */
/* #define NO_V_FLAG_VARIABLE */
/* If PC_PTR is defined, local PC is "const UBYTE *", otherwise it's UWORD. */
/* #define PC_PTR */
/* If PREFETCH_CODE is defined, 2 bytes after the opcode are always fetched. */
/* #define PREFETCH_CODE */
/* 6502 stack handling */
#define PL MEMORY_dGetByte(0x0100 + ++S)
#define PH(x) MEMORY_dPutByte(0x0100 + S--, x)
#define PHW(x) PH((x) >> 8); PH((x) & 0xff)
/* 6502 code fetching */
#ifdef PC_PTR
#define GET_PC() (PC - MEMORY_mem)
#define SET_PC(newpc) (PC = MEMORY_mem + (newpc))
#define PHPC { UWORD tmp = PC - MEMORY_mem; PHW(tmp); }
#define GET_CODE_BYTE() (*PC++)
#define PEEK_CODE_BYTE() (*PC)
#if !defined(WORDS_BIGENDIAN) && defined(WORDS_UNALIGNED_OK)
#define PEEK_CODE_WORD() (*(const UWORD *) PC)
#else
#define PEEK_CODE_WORD() (*PC + (PC[1] << 8))
#endif
#else /* PC_PTR */
#define GET_PC() PC
#define SET_PC(newpc) (PC = (newpc))
#define PHPC PHW(PC)
#define GET_CODE_BYTE() MEMORY_dGetByte(PC++)
#define PEEK_CODE_BYTE() MEMORY_dGetByte(PC)
#define PEEK_CODE_WORD() MEMORY_dGetWord(PC)
#endif /* PC_PTR */
/* Cycle-exact Read-Modify-Write instructions.
RMW instructions: ASL, LSR, ROL, ROR, INC, DEC
(+ some undocumented) write to the specified address
*twice*: first the unmodified value, then the modified value.
This can be observed only with some hardware registers. */
/* XXX: we do this only for GTIA, because NEW_CYCLE_EXACT does not correctly
emulate INC $D400 (and INC $D40A wasn't tested) */
#ifdef NEW_CYCLE_EXACT
#ifndef PAGED_ATTRIB
#define RMW_GetByte(x, addr) \
if (MEMORY_attrib[addr] == MEMORY_HARDWARE) { \
x = MEMORY_HwGetByte(addr, FALSE); \
if ((addr & 0xef00) == 0xc000) { \
ANTIC_xpos--; \
MEMORY_HwPutByte(addr, x); \
ANTIC_xpos++; \
} \
} else \
x = MEMORY_dGetByte(addr);
#else /* PAGED_ATTRIB */
#define RMW_GetByte(x, addr) \
x = MEMORY_GetByte(addr); \
if ((addr & 0xef00) == 0xc000) { \
ANTIC_xpos--; \
MEMORY_PutByte(addr, x); \
ANTIC_xpos++; \
}
#endif /* PAGED_ATTRIB */
#else /* NEW_CYCLE_EXACT */
/* Don't emulate the first write */
#define RMW_GetByte(x, addr) x = MEMORY_GetByte(addr);
#endif /* NEW_CYCLE_EXACT */
/* 6502 registers. */
UWORD CPU_regPC;
UBYTE CPU_regA;
UBYTE CPU_regX;
UBYTE CPU_regY;
UBYTE CPU_regP; /* Processor Status Byte (Partial) */
UBYTE CPU_regS;
/* Transfer 6502 registers between global variables and local variables inside CPU_GO() */
#define UPDATE_GLOBAL_REGS CPU_regPC = GET_PC(); CPU_regS = S; CPU_regA = A; CPU_regX = X; CPU_regY = Y
#define UPDATE_LOCAL_REGS SET_PC(CPU_regPC); S = CPU_regS; A = CPU_regA; X = CPU_regX; Y = CPU_regY
/* 6502 flags local to this module */
static UBYTE N; /* bit7 set => N flag set */
#ifndef NO_V_FLAG_VARIABLE
static UBYTE V; /* non-zero => V flag set */
#endif
static UBYTE Z; /* zero => Z flag set */
static UBYTE C; /* must be 0 or 1 */
/* B, D, I are always in CPU_regP */
void CPU_GetStatus(void)
{
#ifndef NO_V_FLAG_VARIABLE
CPU_regP = (N & 0x80) + (V ? 0x40 : 0) + (CPU_regP & 0x3c) + ((Z == 0) ? 0x02 : 0) + C;
#else
CPU_regP = (N & 0x80) + (CPU_regP & 0x7c) + ((Z == 0) ? 0x02 : 0) + C;
#endif
}
void CPU_PutStatus(void)
{
N = CPU_regP;
#ifndef NO_V_FLAG_VARIABLE
V = (CPU_regP & 0x40);
#endif
Z = (CPU_regP & 0x02) ^ 0x02;
C = (CPU_regP & 0x01);
}
/* Addressing modes */
#ifdef WRAP_ZPAGE
#define zGetWord(x) (MEMORY_dGetByte(x) + (MEMORY_dGetByte((UBYTE) ((x) + 1)) << 8))
#else
#define zGetWord(x) MEMORY_dGetWord(x)
#endif
#ifdef PREFETCH_CODE
#if defined(WORDS_BIGENDIAN) || !defined(WORDS_UNALIGNED_OK)
#warning PREFETCH_CODE is efficient only on little-endian machines with WORDS_UNALIGNED_OK
#endif
#define OP_BYTE ((UBYTE) addr)
#define OP_WORD addr
#define IMMEDIATE (PC++, (UBYTE) addr)
#define ABSOLUTE PC += 2
#define ZPAGE PC++; addr &= 0xff
#define ABSOLUTE_X addr += X; PC += 2
#define ABSOLUTE_Y addr += Y; PC += 2
#define INDIRECT_X PC++; addr = (UBYTE) (addr + X); addr = zGetWord(addr)
#define INDIRECT_Y PC++; addr &= 0xff; addr = zGetWord(addr) + Y
#define ZPAGE_X PC++; addr = (UBYTE) (addr + X)
#define ZPAGE_Y PC++; addr = (UBYTE) (addr + Y)
#else /* PREFETCH_CODE */
#define OP_BYTE PEEK_CODE_BYTE()
#define OP_WORD PEEK_CODE_WORD()
#define IMMEDIATE GET_CODE_BYTE()
#define ABSOLUTE addr = PEEK_CODE_WORD(); PC += 2
#define ZPAGE addr = GET_CODE_BYTE()
#define ABSOLUTE_X addr = PEEK_CODE_WORD() + X; PC += 2
#define ABSOLUTE_Y addr = PEEK_CODE_WORD() + Y; PC += 2
#define INDIRECT_X addr = (UBYTE) (GET_CODE_BYTE() + X); addr = zGetWord(addr)
#define INDIRECT_Y addr = GET_CODE_BYTE(); addr = zGetWord(addr) + Y
#define ZPAGE_X addr = (UBYTE) (GET_CODE_BYTE() + X)
#define ZPAGE_Y addr = (UBYTE) (GET_CODE_BYTE() + Y)
#endif /* PREFETCH_CODE */
/* Instructions */
#define AND(t_data) Z = N = A &= t_data
#define CMP(t_data) data = t_data; Z = N = A - data; C = (A >= data)
#define CPX(t_data) data = t_data; Z = N = X - data; C = (X >= data)
#define CPY(t_data) data = t_data; Z = N = Y - data; C = (Y >= data)
#define EOR(t_data) Z = N = A ^= t_data
#define LDA(t_data) Z = N = A = t_data
#define LDX(t_data) Z = N = X = t_data
#define LDY(t_data) Z = N = Y = t_data
#define ORA(t_data) Z = N = A |= t_data
#ifndef NO_V_FLAG_VARIABLE
#define PHP(x) data = (N & 0x80) + (V ? 0x40 : 0) + (CPU_regP & (x)) + ((Z == 0) ? 0x02 : 0) + C; PH(data)
#define PHPB0 PHP(0x2c) /* push flags with B flag clear (NMI, IRQ) */
#define PHPB1 PHP(0x3c) /* push flags with B flag set (PHP, BRK) */
#define PLP data = PL; N = data; V = (data & 0x40); Z = (data & 0x02) ^ 0x02; C = (data & 0x01); CPU_regP = (data & 0x0c) + 0x30
#else /* NO_V_FLAG_VARIABLE */
#define PHP(x) data = (N & 0x80) + (CPU_regP & (x)) + ((Z == 0) ? 0x02 : 0) + C; PH(data)
#define PHPB0 PHP(0x6c) /* push flags with B flag clear (NMI, IRQ) */
#define PHPB1 PHP(0x7c) /* push flags with B flag set (PHP, BRK) */
#define PLP data = PL; N = data; Z = (data & 0x02) ^ 0x02; C = (data & 0x01); CPU_regP = (data & 0x4c) + 0x30
#endif /* NO_V_FLAG_VARIABLE */
/* 1 or 2 extra cycles for conditional jumps */
#if 0
/* old, less efficient version */
#define BRANCH(cond) \
if (cond) { \
SWORD sdata = (SBYTE) GET_CODE_BYTE(); \
if ((sdata + (UBYTE) GET_PC()) & 0xff00) \
ANTIC_xpos++; \
ANTIC_xpos++; \
PC += sdata; \
DONE \
} \
PC++; \
DONE
#else
#define BRANCH(cond) \
if (cond) { \
addr = (UWORD) (SBYTE) IMMEDIATE; \
addr += GET_PC(); \
if ((addr ^ GET_PC()) & 0xff00) \
ANTIC_xpos++; \
ANTIC_xpos++; \
SET_PC(addr); \
DONE \
} \
PC++; \
DONE
#endif
/* 1 extra cycle for X (or Y) index overflow */
#define NCYCLES_X if ((UBYTE) addr < X) ANTIC_xpos++
#define NCYCLES_Y if ((UBYTE) addr < Y) ANTIC_xpos++
/* Triggers a Non-Maskable Interrupt */
void CPU_NMI(void)
{
UBYTE S = CPU_regS;
UBYTE data;
PHW(CPU_regPC);
PHPB0;
CPU_SetI;
CPU_regPC = MEMORY_dGetWordAligned(0xfffa);
CPU_regS = S;
ANTIC_xpos += 7; /* handling an interrupt by 6502 takes 7 cycles */
INC_RET_NESTING;
}
/* Check pending IRQ, helps in (not only) Lucasfilm games */
#define CPUCHECKIRQ \
if (CPU_IRQ && !(CPU_regP & CPU_I_FLAG) && ANTIC_xpos < ANTIC_xpos_limit) { \
PHPC; \
PHPB0; \
CPU_SetI; \
SET_PC(MEMORY_dGetWordAligned(0xfffe)); \
ANTIC_xpos += 7; \
INC_RET_NESTING; \
}
/* Enter monitor */
#ifdef __PLUS
#define ENTER_MONITOR Atari800_Exit(TRUE)
#else
#ifdef SKIP
#define ENTER_MONITOR if (!Atari800_Exit(TRUE)) exit(0)
#else
#define ENTER_MONITOR exit(0)
#endif
#endif
#define DO_BREAK \
UPDATE_GLOBAL_REGS; \
CPU_GetStatus(); \
ENTER_MONITOR; \
CPU_PutStatus(); \
UPDATE_LOCAL_REGS;
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
static const int cycles[256] =
{
7, 6, 2, 8, 3, 3, 5, 5, 3, 2, 2, 2, 4, 4, 6, 6, /* 0x */
2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 1x */
6, 6, 2, 8, 3, 3, 5, 5, 4, 2, 2, 2, 4, 4, 6, 6, /* 2x */
2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 3x */
6, 6, 2, 8, 3, 3, 5, 5, 3, 2, 2, 2, 3, 4, 6, 6, /* 4x */
2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 5x */
6, 6, 2, 8, 3, 3, 5, 5, 4, 2, 2, 2, 5, 4, 6, 6, /* 6x */
2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 7x */
2, 6, 2, 6, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, /* 8x */
2, 6, 2, 6, 4, 4, 4, 4, 2, 5, 2, 5, 5, 5, 5, 5, /* 9x */
2, 6, 2, 6, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, /* Ax */
2, 5, 2, 5, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, /* Bx */
2, 6, 2, 8, 3, 3, 5, 5, 2, 2, 2, 2, 4, 4, 6, 6, /* Cx */
2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* Dx */
2, 6, 2, 8, 3, 3, 5, 5, 2, 2, 2, 2, 4, 4, 6, 6, /* Ex */
2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7 /* Fx */
};
/* 6502 emulation routine */
#ifndef NO_GOTO
__extension__ /* suppress -ansi -pedantic warnings */
#endif
void CPU_GO(int limit)
{
#ifdef NO_GOTO
#define OPCODE_ALIAS(code) case 0x##code:
#define DONE break;
#else
#define OPCODE_ALIAS(code) opcode_##code:
#define DONE goto next;
static const void *opcode[256] =
{
&&opcode_00, &&opcode_01, &&opcode_02, &&opcode_03,
&&opcode_04, &&opcode_05, &&opcode_06, &&opcode_07,
&&opcode_08, &&opcode_09, &&opcode_0a, &&opcode_0b,
&&opcode_0c, &&opcode_0d, &&opcode_0e, &&opcode_0f,
&&opcode_10, &&opcode_11, &&opcode_12, &&opcode_13,
&&opcode_14, &&opcode_15, &&opcode_16, &&opcode_17,
&&opcode_18, &&opcode_19, &&opcode_1a, &&opcode_1b,
&&opcode_1c, &&opcode_1d, &&opcode_1e, &&opcode_1f,
&&opcode_20, &&opcode_21, &&opcode_22, &&opcode_23,
&&opcode_24, &&opcode_25, &&opcode_26, &&opcode_27,
&&opcode_28, &&opcode_29, &&opcode_2a, &&opcode_2b,
&&opcode_2c, &&opcode_2d, &&opcode_2e, &&opcode_2f,
&&opcode_30, &&opcode_31, &&opcode_32, &&opcode_33,
&&opcode_34, &&opcode_35, &&opcode_36, &&opcode_37,
&&opcode_38, &&opcode_39, &&opcode_3a, &&opcode_3b,
&&opcode_3c, &&opcode_3d, &&opcode_3e, &&opcode_3f,
&&opcode_40, &&opcode_41, &&opcode_42, &&opcode_43,
&&opcode_44, &&opcode_45, &&opcode_46, &&opcode_47,
&&opcode_48, &&opcode_49, &&opcode_4a, &&opcode_4b,
&&opcode_4c, &&opcode_4d, &&opcode_4e, &&opcode_4f,
&&opcode_50, &&opcode_51, &&opcode_52, &&opcode_53,
&&opcode_54, &&opcode_55, &&opcode_56, &&opcode_57,
&&opcode_58, &&opcode_59, &&opcode_5a, &&opcode_5b,
&&opcode_5c, &&opcode_5d, &&opcode_5e, &&opcode_5f,
&&opcode_60, &&opcode_61, &&opcode_62, &&opcode_63,
&&opcode_64, &&opcode_65, &&opcode_66, &&opcode_67,
&&opcode_68, &&opcode_69, &&opcode_6a, &&opcode_6b,
&&opcode_6c, &&opcode_6d, &&opcode_6e, &&opcode_6f,
&&opcode_70, &&opcode_71, &&opcode_72, &&opcode_73,
&&opcode_74, &&opcode_75, &&opcode_76, &&opcode_77,
&&opcode_78, &&opcode_79, &&opcode_7a, &&opcode_7b,
&&opcode_7c, &&opcode_7d, &&opcode_7e, &&opcode_7f,
&&opcode_80, &&opcode_81, &&opcode_82, &&opcode_83,
&&opcode_84, &&opcode_85, &&opcode_86, &&opcode_87,
&&opcode_88, &&opcode_89, &&opcode_8a, &&opcode_8b,
&&opcode_8c, &&opcode_8d, &&opcode_8e, &&opcode_8f,
&&opcode_90, &&opcode_91, &&opcode_92, &&opcode_93,
&&opcode_94, &&opcode_95, &&opcode_96, &&opcode_97,
&&opcode_98, &&opcode_99, &&opcode_9a, &&opcode_9b,
&&opcode_9c, &&opcode_9d, &&opcode_9e, &&opcode_9f,
&&opcode_a0, &&opcode_a1, &&opcode_a2, &&opcode_a3,
&&opcode_a4, &&opcode_a5, &&opcode_a6, &&opcode_a7,
&&opcode_a8, &&opcode_a9, &&opcode_aa, &&opcode_ab,
&&opcode_ac, &&opcode_ad, &&opcode_ae, &&opcode_af,
&&opcode_b0, &&opcode_b1, &&opcode_b2, &&opcode_b3,
&&opcode_b4, &&opcode_b5, &&opcode_b6, &&opcode_b7,
&&opcode_b8, &&opcode_b9, &&opcode_ba, &&opcode_bb,
&&opcode_bc, &&opcode_bd, &&opcode_be, &&opcode_bf,
&&opcode_c0, &&opcode_c1, &&opcode_c2, &&opcode_c3,
&&opcode_c4, &&opcode_c5, &&opcode_c6, &&opcode_c7,
&&opcode_c8, &&opcode_c9, &&opcode_ca, &&opcode_cb,
&&opcode_cc, &&opcode_cd, &&opcode_ce, &&opcode_cf,
&&opcode_d0, &&opcode_d1, &&opcode_d2, &&opcode_d3,
&&opcode_d4, &&opcode_d5, &&opcode_d6, &&opcode_d7,
&&opcode_d8, &&opcode_d9, &&opcode_da, &&opcode_db,
&&opcode_dc, &&opcode_dd, &&opcode_de, &&opcode_df,
&&opcode_e0, &&opcode_e1, &&opcode_e2, &&opcode_e3,
&&opcode_e4, &&opcode_e5, &&opcode_e6, &&opcode_e7,
&&opcode_e8, &&opcode_e9, &&opcode_ea, &&opcode_eb,
&&opcode_ec, &&opcode_ed, &&opcode_ee, &&opcode_ef,
&&opcode_f0, &&opcode_f1, &&opcode_f2, &&opcode_f3,
&&opcode_f4, &&opcode_f5, &&opcode_f6, &&opcode_f7,
&&opcode_f8, &&opcode_f9, &&opcode_fa, &&opcode_fb,
&&opcode_fc, &&opcode_fd, &&opcode_fe, &&opcode_ff,
};
#endif /* NO_GOTO */
#ifdef CYCLES_PER_OPCODE
#define OPCODE(code) OPCODE_ALIAS(code) ANTIC_xpos += cycles[0x##code];
#else
#define OPCODE(code) OPCODE_ALIAS(code)
#endif
#ifdef PC_PTR
const UBYTE *PC;
#else
UWORD PC;
#endif
UBYTE A;
UBYTE X;
UBYTE Y;
UBYTE S;
UWORD addr;
UBYTE data;
#define insn data
/*
This used to be in the main loop but has been removed to improve
execution speed. It does not seem to have any adverse effect on
the emulation for two reasons:
1. NMI's will can only be raised in antic.c - there is
no way an NMI can be generated whilst in this routine.
2. The timing of the IRQs are not that critical. */
if (ANTIC_wsync_halt) {
#ifdef NEW_CYCLE_EXACT
if (ANTIC_DRAWING_SCREEN) {
/* if ANTIC_WSYNC_C is a stolen cycle, ANTIC_antic2cpu_ptr will convert that to the nearest
cpu cycle before that cycle. The CPU will see this cycle, if WSYNC is not
delayed. (Actually this cycle is the first cycle of the instruction after
STA WSYNC, which was really executed one cycle after STA WSYNC because
of an internal antic delay ). ANTIC_delayed_wsync is added to this cycle to form
the limit in the case that WSYNC is not early (does not allow this extra cycle) */
if (limit < ANTIC_antic2cpu_ptr[ANTIC_WSYNC_C] + ANTIC_delayed_wsync)
return;
ANTIC_xpos = ANTIC_antic2cpu_ptr[ANTIC_WSYNC_C] + ANTIC_delayed_wsync;
}
else {
if (limit < (ANTIC_WSYNC_C + ANTIC_delayed_wsync))
return;
ANTIC_xpos = ANTIC_WSYNC_C;
}
ANTIC_delayed_wsync = 0;
#else /* NEW_CYCLE_EXACT */
if (limit < ANTIC_WSYNC_C)
return;
ANTIC_xpos = ANTIC_WSYNC_C;
#endif /* NEW_CYCLE_EXACT */
ANTIC_wsync_halt = 0;
}
ANTIC_xpos_limit = limit; /* needed for WSYNC store inside ANTIC */
UPDATE_LOCAL_REGS;
CPUCHECKIRQ;
while (ANTIC_xpos < ANTIC_xpos_limit) {
#ifdef MONITOR_PROFILE
int old_xpos = ANTIC_xpos;
UWORD old_PC = GET_PC();
#endif
#ifdef MONITOR_BREAKPOINTS
breakpoint_return:
#endif
#ifdef PC_PTR
/* must handle 64k wrapping */
if (PC >= MEMORY_mem + 0xfffe) {
if (PC >= MEMORY_mem + 0x10000)
PC -= 0x10000;
else {
/* the opcode is before 0x10000, but the operand is past */
#ifdef WORDS_UNALIGNED_OK
*(UWORD *) (MEMORY_mem + 0x10000) = *(UWORD *) MEMORY_mem;
#else
MEMORY_mem[0x10000] = MEMORY_mem[0];
MEMORY_mem[0x10001] = MEMORY_mem[1];
#endif /* WORDS_UNALIGNED_OK */
}
}
#endif /* PC_PTR */
#ifdef MONITOR_TRACE
if (MONITOR_trace_file != NULL) {
MONITOR_ShowState(MONITOR_trace_file, GET_PC(), A, X, Y, S,
(N & 0x80) ? 'N' : '-',
#ifndef NO_V_FLAG_VARIABLE
V ? 'V' : '-',
#else
(CPU_regP & CPU_V_FLAG) ? 'V' : '-',
#endif
(Z == 0) ? 'Z' : '-',
(C != 0) ? 'C' : '-');
}
#endif
#ifdef MONITOR_BREAK
CPU_remember_PC[CPU_remember_PC_curpos] = GET_PC();
CPU_remember_op[CPU_remember_PC_curpos][0] = MEMORY_dGetByte(GET_PC());
CPU_remember_op[CPU_remember_PC_curpos][1] = MEMORY_dGetByte(GET_PC()+1);
CPU_remember_op[CPU_remember_PC_curpos][2] = MEMORY_dGetByte(GET_PC()+2);
#ifdef NEW_CYCLE_EXACT
if (ANTIC_DRAWING_SCREEN)
CPU_remember_xpos[CPU_remember_PC_curpos] = ANTIC_cpu2antic_ptr[ANTIC_xpos] + (ANTIC_ypos << 8);
else
#endif
CPU_remember_xpos[CPU_remember_PC_curpos] = ANTIC_xpos + (ANTIC_ypos << 8);
CPU_remember_PC_curpos = (CPU_remember_PC_curpos + 1) % CPU_REMEMBER_PC_STEPS;
if (MONITOR_break_addr == GET_PC() || ANTIC_break_ypos == ANTIC_ypos) {
DO_BREAK;
}
#endif /* MONITOR_BREAK */
#if defined(WRAP_64K) && !defined(PC_PTR)
MEMORY_mem[0x10000] = MEMORY_mem[0];
#endif
insn = GET_CODE_BYTE();
#ifdef MONITOR_BREAKPOINTS
#ifdef MONITOR_BREAK
if (MONITOR_breakpoint_table_size > 0 && MONITOR_breakpoints_enabled && !MONITOR_break_step)
#else
if (MONITOR_breakpoint_table_size > 0 && MONITOR_breakpoints_enabled)
#endif
{
UBYTE optype = MONITOR_optype6502[insn];
int i;
switch (optype >> 4) {
case 1:
addr = PEEK_CODE_WORD();
break;
case 2:
addr = PEEK_CODE_BYTE();
break;
case 3:
addr = PEEK_CODE_WORD() + X;
break;
case 4:
addr = PEEK_CODE_WORD() + Y;
break;
case 5:
addr = (UBYTE) (PEEK_CODE_BYTE() + X);
addr = zGetWord(addr);
break;
case 6:
addr = PEEK_CODE_BYTE();
addr = zGetWord(addr) + Y;
break;
case 7:
addr = (UBYTE) (PEEK_CODE_BYTE() + X);
break;
case 8:
addr = (UBYTE) (PEEK_CODE_BYTE() + Y);
break;
/* XXX: case 13 */
default:
addr = 0;
break;
}
for (i = 0; i < MONITOR_breakpoint_table_size; i++) {
int cond;
int value, m_addr;
if (!MONITOR_breakpoint_table[i].enabled)
continue; /* skip */
cond = MONITOR_breakpoint_table[i].condition;
if (cond == MONITOR_BREAKPOINT_OR)
break; /* fire */
value = MONITOR_breakpoint_table[i].value;
m_addr = MONITOR_breakpoint_table[i].m_addr;
if (cond == MONITOR_BREAKPOINT_FLAG_CLEAR) {
switch (value) {
case CPU_N_FLAG:
if ((N & 0x80) == 0)
continue;
break;
#ifndef NO_V_FLAG_VARIABLE
case CPU_V_FLAG:
if (V == 0)
continue;
break;
#endif
case CPU_Z_FLAG:
if (Z != 0)
continue;
break;
case CPU_C_FLAG:
if (C == 0)
continue;
break;
default:
if ((CPU_regP & value) == 0)
continue;
break;
}
}
else if (cond == MONITOR_BREAKPOINT_FLAG_SET) {
switch (value) {
case CPU_N_FLAG:
if ((N & 0x80) != 0)
continue;
break;
#ifndef NO_V_FLAG_VARIABLE
case CPU_V_FLAG:
if (V != 0)
continue;
break;
#endif
case CPU_Z_FLAG:
if (Z == 0)
continue;
break;
case CPU_C_FLAG:
if (C != 0)
continue;
break;
default:
if ((CPU_regP & value) != 0)
continue;
break;
}
}
else {
int val;
switch (cond >> 3) {
case MONITOR_BREAKPOINT_PC >> 3:
val = GET_PC() - 1;
break;
case MONITOR_BREAKPOINT_A >> 3:
val = A;
break;
case MONITOR_BREAKPOINT_X >> 3:
val = X;
break;
case MONITOR_BREAKPOINT_Y >> 3:
val = Y;
break;
case MONITOR_BREAKPOINT_S >> 3:
val = S;
break;
case MONITOR_BREAKPOINT_READ >> 3:
if ((optype & 4) == 0)
goto cond_failed;
val = addr;
break;
case MONITOR_BREAKPOINT_WRITE >> 3:
if ((optype & 8) == 0)
goto cond_failed;
val = addr;
break;
case MONITOR_BREAKPOINT_ACCESS >> 3:
if ((optype & 12) == 0)
goto cond_failed;
val = addr;
break;
case MONITOR_BREAKPOINT_MEMORY >> 3:
val = MEMORY_SafeGetByte(m_addr);
break;
default:
/* shouldn't happen */
continue;
}
if ((cond & MONITOR_BREAKPOINT_LESS) != 0 && val < value)
continue;
if ((cond & MONITOR_BREAKPOINT_EQUAL) != 0 && val == value)
continue;
if ((cond & MONITOR_BREAKPOINT_GREATER) != 0 && val > value)
continue;
cond_failed:
;
}
/* a condition failed */
/* quickly skip AND-connected conditions */
do {
if (++i >= MONITOR_breakpoint_table_size)
goto no_breakpoint;
} while (MONITOR_breakpoint_table[i].condition != MONITOR_BREAKPOINT_OR || !MONITOR_breakpoint_table[i].enabled);
}
/* fire breakpoint */
PC--;
DO_BREAK;
goto breakpoint_return;
no_breakpoint:
;
}
#endif /* MONITOR_BREAKPOINTS */
#ifndef CYCLES_PER_OPCODE
ANTIC_xpos += cycles[insn];
#endif
#ifdef MONITOR_PROFILE
CPU_instruction_count[insn]++;
MONITOR_coverage[old_PC = PC - 1].count++;
MONITOR_coverage_insns++;
#endif
#ifdef PREFETCH_CODE
addr = PEEK_CODE_WORD();
#endif
#ifdef NO_GOTO
switch (insn) {
#else
goto *opcode[insn];
#endif
OPCODE(00) /* BRK */
#ifdef MONITOR_BREAK
if (MONITOR_break_brk) {
DO_BREAK;
}
else
#endif
{
PC++;
PHPC;
PHPB1;
CPU_SetI;
SET_PC(MEMORY_dGetWordAligned(0xfffe));
INC_RET_NESTING;
}
DONE
OPCODE(01) /* ORA (ab,x) */
INDIRECT_X;
ORA(MEMORY_GetByte(addr));
DONE
OPCODE(03) /* ASO (ab,x) [unofficial - ASL then ORA with Acc] */
INDIRECT_X;
aso:
RMW_GetByte(data, addr);
C = (data & 0x80) ? 1 : 0;
data <<= 1;
MEMORY_PutByte(addr, data);
Z = N = A |= data;
DONE
OPCODE_ALIAS(04) /* NOP ab [unofficial - skip byte] */
OPCODE_ALIAS(44)
OPCODE(64)
PC++;
DONE
OPCODE_ALIAS(14) /* NOP ab,x [unofficial - skip byte] */
OPCODE_ALIAS(34)
OPCODE_ALIAS(54)
OPCODE_ALIAS(74)
OPCODE_ALIAS(d4)
OPCODE(f4)
PC++;
DONE
OPCODE_ALIAS(80) /* NOP #ab [unofficial - skip byte] */
OPCODE_ALIAS(82)
OPCODE_ALIAS(89)
OPCODE_ALIAS(c2)
OPCODE(e2)
PC++;
DONE
OPCODE(05) /* ORA ab */
ZPAGE;
ORA(MEMORY_dGetByte(addr));
DONE
OPCODE(06) /* ASL ab */
ZPAGE;
data = MEMORY_dGetByte(addr);
C = (data & 0x80) ? 1 : 0;
Z = N = data << 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(07) /* ASO ab [unofficial - ASL then ORA with Acc] */
ZPAGE;
aso_zpage:
data = MEMORY_dGetByte(addr);
C = (data & 0x80) ? 1 : 0;
data <<= 1;
MEMORY_dPutByte(addr, data);
Z = N = A |= data;
DONE
OPCODE(08) /* PHP */
PHPB1;
DONE
OPCODE(09) /* ORA #ab */
ORA(IMMEDIATE);
DONE
OPCODE(0a) /* ASL */
C = (A & 0x80) ? 1 : 0;
Z = N = A <<= 1;
DONE
OPCODE_ALIAS(0b) /* ANC #ab [unofficial - AND then copy N to C (Fox) */
OPCODE(2b)
AND(IMMEDIATE);
C = N >= 0x80;
DONE
OPCODE(0c) /* NOP abcd [unofficial - skip word] */
PC += 2;
DONE
OPCODE(0d) /* ORA abcd */
ABSOLUTE;
ORA(MEMORY_GetByte(addr));
DONE
OPCODE(0e) /* ASL abcd */
ABSOLUTE;
RMW_GetByte(data, addr);
C = (data & 0x80) ? 1 : 0;
Z = N = data << 1;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(0f) /* ASO abcd [unofficial - ASL then ORA with Acc] */
ABSOLUTE;
goto aso;
OPCODE(10) /* BPL */
BRANCH(!(N & 0x80))
OPCODE(11) /* ORA (ab),y */
INDIRECT_Y;
NCYCLES_Y;
ORA(MEMORY_GetByte(addr));
DONE
OPCODE(13) /* ASO (ab),y [unofficial - ASL then ORA with Acc] */
INDIRECT_Y;
goto aso;
OPCODE(15) /* ORA ab,x */
ZPAGE_X;
ORA(MEMORY_dGetByte(addr));
DONE
OPCODE(16) /* ASL ab,x */
ZPAGE_X;
data = MEMORY_dGetByte(addr);
C = (data & 0x80) ? 1 : 0;
Z = N = data << 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(17) /* ASO ab,x [unofficial - ASL then ORA with Acc] */
ZPAGE_X;
goto aso_zpage;
OPCODE(18) /* CLC */
C = 0;
DONE
OPCODE(19) /* ORA abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
ORA(MEMORY_GetByte(addr));
DONE
OPCODE(1b) /* ASO abcd,y [unofficial - ASL then ORA with Acc] */
ABSOLUTE_Y;
goto aso;
OPCODE_ALIAS(1c) /* NOP abcd,x [unofficial - skip word] */
OPCODE_ALIAS(3c)
OPCODE_ALIAS(5c)
OPCODE_ALIAS(7c)
OPCODE_ALIAS(dc)
OPCODE(fc)
if (OP_BYTE + X >= 0x100)
ANTIC_xpos++;
PC += 2;
DONE
OPCODE(1d) /* ORA abcd,x */
ABSOLUTE_X;
NCYCLES_X;
ORA(MEMORY_GetByte(addr));
DONE
OPCODE(1e) /* ASL abcd,x */
ABSOLUTE_X;
RMW_GetByte(data, addr);
C = (data & 0x80) ? 1 : 0;
Z = N = data << 1;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(1f) /* ASO abcd,x [unofficial - ASL then ORA with Acc] */
ABSOLUTE_X;
goto aso;
OPCODE(20) /* JSR abcd */
{
UWORD retaddr = GET_PC() + 1;
#ifdef MONITOR_BREAK
CPU_remember_JMP[CPU_remember_jmp_curpos] = GET_PC() - 1;
CPU_remember_jmp_curpos = (CPU_remember_jmp_curpos + 1) % CPU_REMEMBER_JMP_STEPS;
MONITOR_ret_nesting++;
#endif
PHW(retaddr);
}
SET_PC(OP_WORD);
DONE
OPCODE(21) /* AND (ab,x) */
INDIRECT_X;
AND(MEMORY_GetByte(addr));
DONE
OPCODE(23) /* RLA (ab,x) [unofficial - ROL Mem, then AND with A] */
INDIRECT_X;
rla:
RMW_GetByte(data, addr);
if (C) {
C = (data & 0x80) ? 1 : 0;
data = (data << 1) + 1;
}
else {
C = (data & 0x80) ? 1 : 0;
data = (data << 1);
}
MEMORY_PutByte(addr, data);
Z = N = A &= data;
DONE
OPCODE(24) /* BIT ab */
ZPAGE;
N = MEMORY_dGetByte(addr);
#ifndef NO_V_FLAG_VARIABLE
V = N & 0x40;
#else
CPU_regP = (CPU_regP & 0xbf) + (N & 0x40);
#endif
Z = (A & N);
DONE
OPCODE(25) /* AND ab */
ZPAGE;
AND(MEMORY_dGetByte(addr));
DONE
OPCODE(26) /* ROL ab */
ZPAGE;
data = MEMORY_dGetByte(addr);
Z = N = (data << 1) + C;
C = (data & 0x80) ? 1 : 0;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(27) /* RLA ab [unofficial - ROL Mem, then AND with A] */
ZPAGE;
rla_zpage:
data = MEMORY_dGetByte(addr);
if (C) {
C = (data & 0x80) ? 1 : 0;
data = (data << 1) + 1;
}
else {
C = (data & 0x80) ? 1 : 0;
data = (data << 1);
}
MEMORY_dPutByte(addr, data);
Z = N = A &= data;
DONE
OPCODE(28) /* PLP */
PLP;
CPUCHECKIRQ;
DONE
OPCODE(29) /* AND #ab */
AND(IMMEDIATE);
DONE
OPCODE(2a) /* ROL */
Z = N = (A << 1) + C;
C = (A & 0x80) ? 1 : 0;
A = Z;
DONE
OPCODE(2c) /* BIT abcd */
ABSOLUTE;
N = MEMORY_GetByte(addr);
#ifndef NO_V_FLAG_VARIABLE
V = N & 0x40;
#else
CPU_regP = (CPU_regP & 0xbf) + (N & 0x40);
#endif
Z = (A & N);
DONE
OPCODE(2d) /* AND abcd */
ABSOLUTE;
AND(MEMORY_GetByte(addr));
DONE
OPCODE(2e) /* ROL abcd */
ABSOLUTE;
RMW_GetByte(data, addr);
Z = N = (data << 1) + C;
C = (data & 0x80) ? 1 : 0;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(2f) /* RLA abcd [unofficial - ROL Mem, then AND with A] */
ABSOLUTE;
goto rla;
OPCODE(30) /* BMI */
BRANCH(N & 0x80)
OPCODE(31) /* AND (ab),y */
INDIRECT_Y;
NCYCLES_Y;
AND(MEMORY_GetByte(addr));
DONE
OPCODE(33) /* RLA (ab),y [unofficial - ROL Mem, then AND with A] */
INDIRECT_Y;
goto rla;
OPCODE(35) /* AND ab,x */
ZPAGE_X;
AND(MEMORY_dGetByte(addr));
DONE
OPCODE(36) /* ROL ab,x */
ZPAGE_X;
data = MEMORY_dGetByte(addr);
Z = N = (data << 1) + C;
C = (data & 0x80) ? 1 : 0;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(37) /* RLA ab,x [unofficial - ROL Mem, then AND with A] */
ZPAGE_X;
goto rla_zpage;
OPCODE(38) /* SEC */
C = 1;
DONE
OPCODE(39) /* AND abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
AND(MEMORY_GetByte(addr));
DONE
OPCODE(3b) /* RLA abcd,y [unofficial - ROL Mem, then AND with A] */
ABSOLUTE_Y;
goto rla;
OPCODE(3d) /* AND abcd,x */
ABSOLUTE_X;
NCYCLES_X;
AND(MEMORY_GetByte(addr));
DONE
OPCODE(3e) /* ROL abcd,x */
ABSOLUTE_X;
RMW_GetByte(data, addr);
Z = N = (data << 1) + C;
C = (data & 0x80) ? 1 : 0;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(3f) /* RLA abcd,x [unofficial - ROL Mem, then AND with A] */
ABSOLUTE_X;
goto rla;
OPCODE(40) /* RTI */
PLP;
data = PL;
SET_PC((PL << 8) + data);
CPUCHECKIRQ;
#ifdef MONITOR_BREAK
if (MONITOR_break_ret && --MONITOR_ret_nesting <= 0)
MONITOR_break_step = TRUE;
#endif
DONE
OPCODE(41) /* EOR (ab,x) */
INDIRECT_X;
EOR(MEMORY_GetByte(addr));
DONE
OPCODE(43) /* LSE (ab,x) [unofficial - LSR then EOR result with A] */
INDIRECT_X;
lse:
RMW_GetByte(data, addr);
C = data & 1;
data >>= 1;
MEMORY_PutByte(addr, data);
Z = N = A ^= data;
DONE
OPCODE(45) /* EOR ab */
ZPAGE;
EOR(MEMORY_dGetByte(addr));
DONE
OPCODE(46) /* LSR ab */
ZPAGE;
data = MEMORY_dGetByte(addr);
C = data & 1;
Z = data >> 1;
N = 0;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(47) /* LSE ab [unofficial - LSR then EOR result with A] */
ZPAGE;
lse_zpage:
data = MEMORY_dGetByte(addr);
C = data & 1;
data >>= 1;
MEMORY_dPutByte(addr, data);
Z = N = A ^= data;
DONE
OPCODE(48) /* PHA */
PH(A);
DONE
OPCODE(49) /* EOR #ab */
EOR(IMMEDIATE);
DONE
OPCODE(4a) /* LSR */
C = A & 1;
Z = N = A >>= 1;
DONE
OPCODE(4b) /* ALR #ab [unofficial - Acc AND Data, LSR result] */
data = A & IMMEDIATE;
C = data & 1;
Z = N = A = (data >> 1);
DONE
OPCODE(4c) /* JMP abcd */
#ifdef MONITOR_BREAK
CPU_remember_JMP[CPU_remember_jmp_curpos] = GET_PC() - 1;
CPU_remember_jmp_curpos = (CPU_remember_jmp_curpos + 1) % CPU_REMEMBER_JMP_STEPS;
#endif
SET_PC(OP_WORD);
DONE
OPCODE(4d) /* EOR abcd */
ABSOLUTE;
EOR(MEMORY_GetByte(addr));
DONE
OPCODE(4e) /* LSR abcd */
ABSOLUTE;
RMW_GetByte(data, addr);
C = data & 1;
Z = data >> 1;
N = 0;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(4f) /* LSE abcd [unofficial - LSR then EOR result with A] */
ABSOLUTE;
goto lse;
OPCODE(50) /* BVC */
#ifndef NO_V_FLAG_VARIABLE
BRANCH(!V)
#else
BRANCH(!(CPU_regP & 0x40))
#endif
OPCODE(51) /* EOR (ab),y */
INDIRECT_Y;
NCYCLES_Y;
EOR(MEMORY_GetByte(addr));
DONE
OPCODE(53) /* LSE (ab),y [unofficial - LSR then EOR result with A] */
INDIRECT_Y;
goto lse;
OPCODE(55) /* EOR ab,x */
ZPAGE_X;
EOR(MEMORY_dGetByte(addr));
DONE
OPCODE(56) /* LSR ab,x */
ZPAGE_X;
data = MEMORY_dGetByte(addr);
C = data & 1;
Z = data >> 1;
N = 0;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(57) /* LSE ab,x [unofficial - LSR then EOR result with A] */
ZPAGE_X;
goto lse_zpage;
OPCODE(58) /* CLI */
CPU_ClrI;
CPUCHECKIRQ;
DONE
OPCODE(59) /* EOR abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
EOR(MEMORY_GetByte(addr));
DONE
OPCODE(5b) /* LSE abcd,y [unofficial - LSR then EOR result with A] */
ABSOLUTE_Y;
goto lse;
OPCODE(5d) /* EOR abcd,x */
ABSOLUTE_X;
NCYCLES_X;
EOR(MEMORY_GetByte(addr));
DONE
OPCODE(5e) /* LSR abcd,x */
ABSOLUTE_X;
RMW_GetByte(data, addr);
C = data & 1;
Z = data >> 1;
N = 0;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(5f) /* LSE abcd,x [unofficial - LSR then EOR result with A] */
ABSOLUTE_X;
goto lse;
OPCODE(60) /* RTS */
data = PL;
SET_PC((PL << 8) + data + 1);
#ifdef MONITOR_BREAK
if (MONITOR_break_ret && --MONITOR_ret_nesting <= 0)
MONITOR_break_step = TRUE;
#endif
if (CPU_rts_handler != NULL) {
CPU_rts_handler();
CPU_rts_handler = NULL;
}
DONE
OPCODE(61) /* ADC (ab,x) */
INDIRECT_X;
data = MEMORY_GetByte(addr);
goto adc;
OPCODE(63) /* RRA (ab,x) [unofficial - ROR Mem, then ADC to Acc] */
INDIRECT_X;
rra:
RMW_GetByte(data, addr);
if (C) {
C = data & 1;
data = (data >> 1) + 0x80;
}
else {
C = data & 1;
data >>= 1;
}
MEMORY_PutByte(addr, data);
goto adc;
OPCODE(65) /* ADC ab */
ZPAGE;
data = MEMORY_dGetByte(addr);
goto adc;
OPCODE(66) /* ROR ab */
ZPAGE;
data = MEMORY_dGetByte(addr);
Z = N = (C << 7) + (data >> 1);
C = data & 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(67) /* RRA ab [unofficial - ROR Mem, then ADC to Acc] */
ZPAGE;
rra_zpage:
data = MEMORY_dGetByte(addr);
if (C) {
C = data & 1;
data = (data >> 1) + 0x80;
}
else {
C = data & 1;
data >>= 1;
}
MEMORY_dPutByte(addr, data);
goto adc;
OPCODE(68) /* PLA */
Z = N = A = PL;
DONE
OPCODE(69) /* ADC #ab */
data = IMMEDIATE;
goto adc;
OPCODE(6a) /* ROR */
Z = N = (C << 7) + (A >> 1);
C = A & 1;
A = Z;
DONE
OPCODE(6b) /* ARR #ab [unofficial - Acc AND Data, ROR result] */
/* It does some 'BCD fixup' if D flag is set */
/* MPC 05/24/00 */
data = A & IMMEDIATE;
if (CPU_regP & CPU_D_FLAG) {
UBYTE temp = (data >> 1) + (C << 7);
Z = N = temp;
#ifndef NO_V_FLAG_VARIABLE
V = ((temp ^ data) & 0x40);
#else
CPU_regP = (CPU_regP & 0xbf) + ((temp ^ data) & 0x40);
#endif
if ((data & 0x0F) + (data & 0x01) > 5)
temp = (temp & 0xF0) + ((temp + 0x6) & 0x0F);
if (data + (data & 0x10) >= 0x60) {
temp += 0x60;
C = 1;
}
else
C = 0;
A = (UBYTE) temp;
}
else {
Z = N = A = (data >> 1) + (C << 7);
C = data >> 7;
#ifndef NO_V_FLAG_VARIABLE
V = C ^ ((A >> 5) & 1);
#else
CPU_regP = (CPU_regP & 0xbf) + ((A ^ data) & 0x40);
#endif
}
DONE
OPCODE(6c) /* JMP (abcd) */
#ifdef MONITOR_BREAK
CPU_remember_JMP[CPU_remember_jmp_curpos] = GET_PC() - 1;
CPU_remember_jmp_curpos = (CPU_remember_jmp_curpos + 1) % CPU_REMEMBER_JMP_STEPS;
#endif
ABSOLUTE;
#ifdef CPU65C02
/* XXX: if ((UBYTE) addr == 0xff) ANTIC_xpos++; */
SET_PC(MEMORY_dGetWord(addr));
#else
/* original 6502 had a bug in JMP (addr) when addr crossed page boundary */
if ((UBYTE) addr == 0xff)
SET_PC((MEMORY_dGetByte(addr - 0xff) << 8) + MEMORY_dGetByte(addr));
else
SET_PC(MEMORY_dGetWord(addr));
#endif
DONE
OPCODE(6d) /* ADC abcd */
ABSOLUTE;
data = MEMORY_GetByte(addr);
goto adc;
OPCODE(6e) /* ROR abcd */
ABSOLUTE;
RMW_GetByte(data, addr);
Z = N = (C << 7) + (data >> 1);
C = data & 1;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(6f) /* RRA abcd [unofficial - ROR Mem, then ADC to Acc] */
ABSOLUTE;
goto rra;
OPCODE(70) /* BVS */
#ifndef NO_V_FLAG_VARIABLE
BRANCH(V)
#else
BRANCH(CPU_regP & 0x40)
#endif
OPCODE(71) /* ADC (ab),y */
INDIRECT_Y;
NCYCLES_Y;
data = MEMORY_GetByte(addr);
goto adc;
OPCODE(73) /* RRA (ab),y [unofficial - ROR Mem, then ADC to Acc] */
INDIRECT_Y;
goto rra;
OPCODE(75) /* ADC ab,x */
ZPAGE_X;
data = MEMORY_dGetByte(addr);
goto adc;
OPCODE(76) /* ROR ab,x */
ZPAGE_X;
data = MEMORY_dGetByte(addr);
Z = N = (C << 7) + (data >> 1);
C = data & 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(77) /* RRA ab,x [unofficial - ROR Mem, then ADC to Acc] */
ZPAGE_X;
goto rra_zpage;
OPCODE(78) /* SEI */
CPU_SetI;
DONE
OPCODE(79) /* ADC abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
data = MEMORY_GetByte(addr);
goto adc;
OPCODE(7b) /* RRA abcd,y [unofficial - ROR Mem, then ADC to Acc] */
ABSOLUTE_Y;
goto rra;
OPCODE(7d) /* ADC abcd,x */
ABSOLUTE_X;
NCYCLES_X;
data = MEMORY_GetByte(addr);
goto adc;
OPCODE(7e) /* ROR abcd,x */
ABSOLUTE_X;
RMW_GetByte(data, addr);
Z = N = (C << 7) + (data >> 1);
C = data & 1;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(7f) /* RRA abcd,x [unofficial - ROR Mem, then ADC to Acc] */
ABSOLUTE_X;
goto rra;
OPCODE(81) /* STA (ab,x) */
INDIRECT_X;
MEMORY_PutByte(addr, A);
DONE
/* AXS doesn't change flags and SAX is better name for it (Fox) */
OPCODE(83) /* SAX (ab,x) [unofficial - Store result A AND X */
INDIRECT_X;
data = A & X;
MEMORY_PutByte(addr, data);
DONE
OPCODE(84) /* STY ab */
ZPAGE;
MEMORY_dPutByte(addr, Y);
DONE
OPCODE(85) /* STA ab */
ZPAGE;
MEMORY_dPutByte(addr, A);
DONE
OPCODE(86) /* STX ab */
ZPAGE;
MEMORY_dPutByte(addr, X);
DONE
OPCODE(87) /* SAX ab [unofficial - Store result A AND X] */
ZPAGE;
data = A & X;
MEMORY_dPutByte(addr, data);
DONE
OPCODE(88) /* DEY */
Z = N = --Y;
DONE
OPCODE(8a) /* TXA */
Z = N = A = X;
DONE
OPCODE(8b) /* ANE #ab [unofficial - A AND X AND (Mem OR $EF) to Acc] (Fox) */
data = IMMEDIATE;
Z = N = A & X & data;
A &= X & (data | 0xef);
DONE
OPCODE(8c) /* STY abcd */
ABSOLUTE;
MEMORY_PutByte(addr, Y);
DONE
OPCODE(8d) /* STA abcd */
ABSOLUTE;
MEMORY_PutByte(addr, A);
DONE
OPCODE(8e) /* STX abcd */
ABSOLUTE;
MEMORY_PutByte(addr, X);
DONE
OPCODE(8f) /* SAX abcd [unofficial - Store result A AND X] */
ABSOLUTE;
data = A & X;
MEMORY_PutByte(addr, data);
DONE
OPCODE(90) /* BCC */
BRANCH(!C)
OPCODE(91) /* STA (ab),y */
INDIRECT_Y;
MEMORY_PutByte(addr, A);
DONE
OPCODE(93) /* SHA (ab),y [unofficial, UNSTABLE - Store A AND X AND (H+1) ?] (Fox) */
/* It seems previous memory value is important - also in 9f */
ZPAGE;
addr = zGetWord(addr);
data = A & X & ((addr >> 8) + 1);
if ((addr & 0xff) + Y > 0xff) { /* if it crosses a page */
MEMORY_PutByte(((addr + Y) & 0xff) | (data << 8), data);
}
else {
MEMORY_PutByte(addr + Y, data);
}
DONE
OPCODE(94) /* STY ab,x */
ZPAGE_X;
MEMORY_dPutByte(addr, Y);
DONE
OPCODE(95) /* STA ab,x */
ZPAGE_X;
MEMORY_dPutByte(addr, A);
DONE
OPCODE(96) /* STX ab,y */
ZPAGE_Y;
MEMORY_PutByte(addr, X);
DONE
OPCODE(97) /* SAX ab,y [unofficial - Store result A AND X] */
ZPAGE_Y;
data = A & X;
MEMORY_dPutByte(addr, data);
DONE
OPCODE(98) /* TYA */
Z = N = A = Y;
DONE
OPCODE(99) /* STA abcd,y */
ABSOLUTE_Y;
MEMORY_PutByte(addr, A);
DONE
OPCODE(9a) /* TXS */
S = X;
DONE
OPCODE(9b) /* SHS abcd,y [unofficial, UNSTABLE] (Fox) */
/* Transfer A AND X to S, then store S AND (H+1)] */
/* S seems to be stable, only memory values vary */
ABSOLUTE;
S = A & X;
data = S & ((addr >> 8) + 1);
if ((addr & 0xff) + Y > 0xff) { /* if it crosses a page */
MEMORY_PutByte(((addr + Y) & 0xff) | (data << 8), data);
}
else {
MEMORY_PutByte(addr + Y, data);
}
DONE
OPCODE(9c) /* SHY abcd,x [unofficial - Store Y and (H+1)] (Fox) */
/* Seems to be stable */
ABSOLUTE;
/* MPC 05/24/00 */
data = Y & ((UBYTE) ((addr >> 8) + 1));
if ((addr & 0xff) + X > 0xff) { /* if it crosses a page */
MEMORY_PutByte(((addr + X) & 0xff) | (data << 8), data);
}
else {
MEMORY_PutByte(addr + X, data);
}
DONE
OPCODE(9d) /* STA abcd,x */
ABSOLUTE_X;
MEMORY_PutByte(addr, A);
DONE
OPCODE(9e) /* SHX abcd,y [unofficial - Store X and (H+1)] (Fox) */
/* Seems to be stable */
ABSOLUTE;
/* MPC 05/24/00 */
data = X & ((UBYTE) ((addr >> 8) + 1));
if ((addr & 0xff) + Y > 0xff) { /* if it crosses a page */
MEMORY_PutByte(((addr + Y) & 0xff) | (data << 8), data);
}
else {
MEMORY_PutByte(addr + Y, data);
}
DONE
OPCODE(9f) /* SHA abcd,y [unofficial, UNSTABLE - Store A AND X AND (H+1) ?] (Fox) */
ABSOLUTE;
data = A & X & ((addr >> 8) + 1);
if ((addr & 0xff) + Y > 0xff) { /* if it crosses a page */
MEMORY_PutByte(((addr + Y) & 0xff) | (data << 8), data);
}
else {
MEMORY_PutByte(addr + Y, data);
}
DONE
OPCODE(a0) /* LDY #ab */
LDY(IMMEDIATE);
DONE
OPCODE(a1) /* LDA (ab,x) */
INDIRECT_X;
LDA(MEMORY_GetByte(addr));
DONE
OPCODE(a2) /* LDX #ab */
LDX(IMMEDIATE);
DONE
OPCODE(a3) /* LAX (ab,x) [unofficial] */
INDIRECT_X;
Z = N = X = A = MEMORY_GetByte(addr);
DONE
OPCODE(a4) /* LDY ab */
ZPAGE;
LDY(MEMORY_dGetByte(addr));
DONE
OPCODE(a5) /* LDA ab */
ZPAGE;
LDA(MEMORY_dGetByte(addr));
DONE
OPCODE(a6) /* LDX ab */
ZPAGE;
LDX(MEMORY_dGetByte(addr));
DONE
OPCODE(a7) /* LAX ab [unofficial] */
ZPAGE;
Z = N = X = A = MEMORY_GetByte(addr);
DONE
OPCODE(a8) /* TAY */
Z = N = Y = A;
DONE
OPCODE(a9) /* LDA #ab */
LDA(IMMEDIATE);
DONE
OPCODE(aa) /* TAX */
Z = N = X = A;
DONE
OPCODE(ab) /* ANX #ab [unofficial - AND #ab, then TAX] */
Z = N = X = A &= IMMEDIATE;
DONE
OPCODE(ac) /* LDY abcd */
ABSOLUTE;
LDY(MEMORY_GetByte(addr));
DONE
OPCODE(ad) /* LDA abcd */
ABSOLUTE;
LDA(MEMORY_GetByte(addr));
DONE
OPCODE(ae) /* LDX abcd */
ABSOLUTE;
LDX(MEMORY_GetByte(addr));
DONE
OPCODE(af) /* LAX abcd [unofficial] */
ABSOLUTE;
Z = N = X = A = MEMORY_GetByte(addr);
DONE
OPCODE(b0) /* BCS */
BRANCH(C)
OPCODE(b1) /* LDA (ab),y */
INDIRECT_Y;
NCYCLES_Y;
LDA(MEMORY_GetByte(addr));
DONE
OPCODE(b3) /* LAX (ab),y [unofficial] */
INDIRECT_Y;
NCYCLES_Y;
Z = N = X = A = MEMORY_GetByte(addr);
DONE
OPCODE(b4) /* LDY ab,x */
ZPAGE_X;
LDY(MEMORY_dGetByte(addr));
DONE
OPCODE(b5) /* LDA ab,x */
ZPAGE_X;
LDA(MEMORY_dGetByte(addr));
DONE
OPCODE(b6) /* LDX ab,y */
ZPAGE_Y;
LDX(MEMORY_GetByte(addr));
DONE
OPCODE(b7) /* LAX ab,y [unofficial] */
ZPAGE_Y;
Z = N = X = A = MEMORY_GetByte(addr);
DONE
OPCODE(b8) /* CLV */
#ifndef NO_V_FLAG_VARIABLE
V = 0;
#else
CPU_ClrV;
#endif
DONE
OPCODE(b9) /* LDA abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
LDA(MEMORY_GetByte(addr));
DONE
OPCODE(ba) /* TSX */
Z = N = X = S;
DONE
/* AXA [unofficial - original decode by R.Sterba and R.Petruzela 15.1.1998 :-)]
AXA - this is our new imaginative name for instruction with opcode hex BB.
AXA - Store Mem AND #$FD to Acc and X, then set stackpoint to value (Acc - 4)
It's cool! :-)
LAS - this is better name for this :) (Fox)
It simply ANDs stack pointer with Mem, then transfers result to A and X
*/
OPCODE(bb) /* LAS abcd,y [unofficial - AND S with Mem, transfer to A and X (Fox) */
ABSOLUTE_Y;
NCYCLES_Y;
Z = N = A = X = S &= MEMORY_GetByte(addr);
DONE
OPCODE(bc) /* LDY abcd,x */
ABSOLUTE_X;
NCYCLES_X;
LDY(MEMORY_GetByte(addr));
DONE
OPCODE(bd) /* LDA abcd,x */
ABSOLUTE_X;
NCYCLES_X;
LDA(MEMORY_GetByte(addr));
DONE
OPCODE(be) /* LDX abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
LDX(MEMORY_GetByte(addr));
DONE
OPCODE(bf) /* LAX abcd,y [unofficial] */
ABSOLUTE_Y;
NCYCLES_Y;
Z = N = X = A = MEMORY_GetByte(addr);
DONE
OPCODE(c0) /* CPY #ab */
CPY(IMMEDIATE);
DONE
OPCODE(c1) /* CMP (ab,x) */
INDIRECT_X;
CMP(MEMORY_GetByte(addr));
DONE
OPCODE(c3) /* DCM (ab,x) [unofficial - DEC Mem then CMP with Acc] */
INDIRECT_X;
dcm:
RMW_GetByte(data, addr);
data--;
MEMORY_PutByte(addr, data);
CMP(data);
DONE
OPCODE(c4) /* CPY ab */
ZPAGE;
CPY(MEMORY_dGetByte(addr));
DONE
OPCODE(c5) /* CMP ab */
ZPAGE;
CMP(MEMORY_dGetByte(addr));
DONE
OPCODE(c6) /* DEC ab */
ZPAGE;
Z = N = MEMORY_dGetByte(addr) - 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(c7) /* DCM ab [unofficial - DEC Mem then CMP with Acc] */
ZPAGE;
dcm_zpage:
data = MEMORY_dGetByte(addr) - 1;
MEMORY_dPutByte(addr, data);
CMP(data);
DONE
OPCODE(c8) /* INY */
Z = N = ++Y;
DONE
OPCODE(c9) /* CMP #ab */
CMP(IMMEDIATE);
DONE
OPCODE(ca) /* DEX */
Z = N = --X;
DONE
OPCODE(cb) /* SBX #ab [unofficial - store ((A AND X) - Mem) in X] (Fox) */
X &= A;
data = IMMEDIATE;
C = X >= data;
/* MPC 05/24/00 */
Z = N = X -= data;
DONE
OPCODE(cc) /* CPY abcd */
ABSOLUTE;
CPY(MEMORY_GetByte(addr));
DONE
OPCODE(cd) /* CMP abcd */
ABSOLUTE;
CMP(MEMORY_GetByte(addr));
DONE
OPCODE(ce) /* DEC abcd */
ABSOLUTE;
RMW_GetByte(Z, addr);
N = --Z;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(cf) /* DCM abcd [unofficial - DEC Mem then CMP with Acc] */
ABSOLUTE;
goto dcm;
OPCODE(d0) /* BNE */
BRANCH(Z)
OPCODE(d1) /* CMP (ab),y */
INDIRECT_Y;
NCYCLES_Y;
CMP(MEMORY_GetByte(addr));
DONE
OPCODE(d3) /* DCM (ab),y [unofficial - DEC Mem then CMP with Acc] */
INDIRECT_Y;
goto dcm;
OPCODE(d5) /* CMP ab,x */
ZPAGE_X;
CMP(MEMORY_dGetByte(addr));
DONE
OPCODE(d6) /* DEC ab,x */
ZPAGE_X;
Z = N = MEMORY_dGetByte(addr) - 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(d7) /* DCM ab,x [unofficial - DEC Mem then CMP with Acc] */
ZPAGE_X;
goto dcm_zpage;
OPCODE(d8) /* CLD */
CPU_ClrD;
DONE
OPCODE(d9) /* CMP abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
CMP(MEMORY_GetByte(addr));
DONE
OPCODE(db) /* DCM abcd,y [unofficial - DEC Mem then CMP with Acc] */
ABSOLUTE_Y;
goto dcm;
OPCODE(dd) /* CMP abcd,x */
ABSOLUTE_X;
NCYCLES_X;
CMP(MEMORY_GetByte(addr));
DONE
OPCODE(de) /* DEC abcd,x */
ABSOLUTE_X;
RMW_GetByte(Z, addr);
N = --Z;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(df) /* DCM abcd,x [unofficial - DEC Mem then CMP with Acc] */
ABSOLUTE_X;
goto dcm;
OPCODE(e0) /* CPX #ab */
CPX(IMMEDIATE);
DONE
OPCODE(e1) /* SBC (ab,x) */
INDIRECT_X;
data = MEMORY_GetByte(addr);
goto sbc;
OPCODE(e3) /* INS (ab,x) [unofficial - INC Mem then SBC with Acc] */
INDIRECT_X;
ins:
RMW_GetByte(data, addr);
++data;
MEMORY_PutByte(addr, data);
goto sbc;
OPCODE(e4) /* CPX ab */
ZPAGE;
CPX(MEMORY_dGetByte(addr));
DONE
OPCODE(e5) /* SBC ab */
ZPAGE;
data = MEMORY_dGetByte(addr);
goto sbc;
OPCODE(e6) /* INC ab */
ZPAGE;
Z = N = MEMORY_dGetByte(addr) + 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(e7) /* INS ab [unofficial - INC Mem then SBC with Acc] */
ZPAGE;
ins_zpage:
data = MEMORY_dGetByte(addr) + 1;
MEMORY_dPutByte(addr, data);
goto sbc;
OPCODE(e8) /* INX */
Z = N = ++X;
DONE
OPCODE_ALIAS(e9) /* SBC #ab */
OPCODE(eb) /* SBC #ab [unofficial] */
data = IMMEDIATE;
goto sbc;
OPCODE_ALIAS(ea) /* NOP */
OPCODE_ALIAS(1a) /* NOP [unofficial] */
OPCODE_ALIAS(3a)
OPCODE_ALIAS(5a)
OPCODE_ALIAS(7a)
OPCODE_ALIAS(da)
OPCODE(fa)
DONE
OPCODE(ec) /* CPX abcd */
ABSOLUTE;
CPX(MEMORY_GetByte(addr));
DONE
OPCODE(ed) /* SBC abcd */
ABSOLUTE;
data = MEMORY_GetByte(addr);
goto sbc;
OPCODE(ee) /* INC abcd */
ABSOLUTE;
RMW_GetByte(Z, addr);
N = ++Z;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(ef) /* INS abcd [unofficial - INC Mem then SBC with Acc] */
ABSOLUTE;
goto ins;
OPCODE(f0) /* BEQ */
BRANCH(!Z)
OPCODE(f1) /* SBC (ab),y */
INDIRECT_Y;
NCYCLES_Y;
data = MEMORY_GetByte(addr);
goto sbc;
OPCODE(f3) /* INS (ab),y [unofficial - INC Mem then SBC with Acc] */
INDIRECT_Y;
goto ins;
OPCODE(f5) /* SBC ab,x */
ZPAGE_X;
data = MEMORY_dGetByte(addr);
goto sbc;
OPCODE(f6) /* INC ab,x */
ZPAGE_X;
Z = N = MEMORY_dGetByte(addr) + 1;
MEMORY_dPutByte(addr, Z);
DONE
OPCODE(f7) /* INS ab,x [unofficial - INC Mem then SBC with Acc] */
ZPAGE_X;
goto ins_zpage;
OPCODE(f8) /* SED */
CPU_SetD;
DONE
OPCODE(f9) /* SBC abcd,y */
ABSOLUTE_Y;
NCYCLES_Y;
data = MEMORY_GetByte(addr);
goto sbc;
OPCODE(fb) /* INS abcd,y [unofficial - INC Mem then SBC with Acc] */
ABSOLUTE_Y;
goto ins;
OPCODE(fd) /* SBC abcd,x */
ABSOLUTE_X;
NCYCLES_X;
data = MEMORY_GetByte(addr);
goto sbc;
OPCODE(fe) /* INC abcd,x */
ABSOLUTE_X;
RMW_GetByte(Z, addr);
N = ++Z;
MEMORY_PutByte(addr, Z);
DONE
OPCODE(ff) /* INS abcd,x [unofficial - INC Mem then SBC with Acc] */
ABSOLUTE_X;
goto ins;
#ifdef ASAP
OPCODE_ALIAS(d2)
OPCODE_ALIAS(f2)
#else
OPCODE(d2) /* ESCRTS #ab (CIM) - on Atari is here instruction CIM [unofficial] !RS! */
data = IMMEDIATE;
UPDATE_GLOBAL_REGS;
CPU_GetStatus();
ESC_Run(data);
CPU_PutStatus();
UPDATE_LOCAL_REGS;
data = PL;
SET_PC((PL << 8) + data + 1);
#ifdef MONITOR_BREAK
if (MONITOR_break_ret && --MONITOR_ret_nesting <= 0)
MONITOR_break_step = TRUE;
#endif
DONE
OPCODE(f2) /* ESC #ab (CIM) - on Atari is here instruction CIM [unofficial] !RS! */
/* OPCODE(ff: ESC #ab - opcode FF is now used for INS [unofficial] instruction !RS! */
data = IMMEDIATE;
UPDATE_GLOBAL_REGS;
CPU_GetStatus();
ESC_Run(data);
CPU_PutStatus();
UPDATE_LOCAL_REGS;
DONE
#endif /* ASAP */
OPCODE_ALIAS(02) /* CIM [unofficial - crash intermediate] */
OPCODE_ALIAS(12)
OPCODE_ALIAS(22)
OPCODE_ALIAS(32)
OPCODE_ALIAS(42)
OPCODE_ALIAS(52)
OPCODE_ALIAS(62)
OPCODE_ALIAS(72)
OPCODE_ALIAS(92)
OPCODE(b2)
#ifdef ASAP
ASAP_CIM();
DONE
#else
/* OPCODE(d2) Used for ESCRTS #ab (CIM) */
/* OPCODE(f2) Used for ESC #ab (CIM) */
PC--;
UPDATE_GLOBAL_REGS;
CPU_GetStatus();
#ifdef CRASH_MENU
UI_crash_address = GET_PC();
UI_crash_afterCIM = GET_PC() + 1;
UI_crash_code = insn;
UI_Run();
#else
CPU_cim_encountered = TRUE;
ENTER_MONITOR;
#endif /* CRASH_MENU */
CPU_PutStatus();
UPDATE_LOCAL_REGS;
DONE
#endif /* ASAP */
/* ---------------------------------------------- */
/* ADC and SBC routines */
adc:
if (!(CPU_regP & CPU_D_FLAG)) {
/* Binary mode */
unsigned int tmp;
tmp = A + data + C;
C = tmp > 0xff;
/* C = tmp >> 8; */
#ifndef NO_V_FLAG_VARIABLE
V = !((A ^ data) & 0x80) && ((data ^ tmp) & 0x80);
#else
CPU_ClrV;
if (!((A ^ data) & 0x80) && ((data ^ tmp) & 0x80))
CPU_SetV;
#endif
Z = N = A = (UBYTE) tmp;
}
else {
/* Decimal mode */
unsigned int tmp;
tmp = (A & 0x0f) + (data & 0x0f) + C;
if (tmp >= 0x0a)
tmp = ((tmp + 0x06) & 0x0f) + 0x10;
tmp += (A & 0xf0) + (data & 0xf0);
Z = A + data + C;
N = (UBYTE) tmp;
#ifndef NO_V_FLAG_VARIABLE
V = !((A ^ data) & 0x80) && ((data ^ tmp) & 0x80);
#else
CPU_ClrV;
if (!((A ^ data) & 0x80) && ((data ^ tmp) & 0x80))
CPU_SetV;
#endif
if (tmp >= 0xa0)
tmp += 0x60;
C = tmp > 0xff;
A = (UBYTE) tmp;
}
DONE
sbc:
if (!(CPU_regP & CPU_D_FLAG)) {
/* Binary mode */
unsigned int tmp;
/* tmp = A - data - !C; */
tmp = A - data - 1 + C;
C = tmp < 0x100;
#ifndef NO_V_FLAG_VARIABLE
V = ((A ^ data) & 0x80) && ((A ^ tmp) & 0x80);
#else
CPU_ClrV;
if (((A ^ data) & 0x80) && ((A ^ tmp) & 0x80))
CPU_SetV;
#endif
Z = N = A = (UBYTE) tmp;
}
else {
/* Decimal mode */
unsigned int tmp;
tmp = (A & 0x0f) - (data & 0x0f) - 1 + C;
if (tmp & 0x10)
tmp = ((tmp - 0x06) & 0x0f) - 0x10;
tmp += (A & 0xf0) - (data & 0xf0);
if (tmp & 0x100)
tmp -= 0x60;
Z = N = A - data - 1 + C;
#ifndef NO_V_FLAG_VARIABLE
V = ((A ^ data) & 0x80) && ((A ^ Z) & 0x80);
#else
CPU_ClrV;
if (((A ^ data) & 0x80) && ((A ^ Z) & 0x80))
CPU_SetV;
#endif
C = ((unsigned int) (A - data - 1 + C)) <= 0xff;
A = tmp;
}
DONE
#ifdef NO_GOTO
}
#else
next:
#endif
#ifdef MONITOR_PROFILE
{
int cyc = ANTIC_xpos - old_xpos;
MONITOR_coverage[old_PC].cycles += cyc;
MONITOR_coverage_cycles += cyc;
}
#endif
#ifdef MONITOR_BREAK
if (MONITOR_break_step) {
DO_BREAK;
}
#endif
/* This "continue" does nothing here.
But it is necessary because, if we're not using NO_GOTO nor MONITOR_BREAK,
gcc can complain: "error: label at end of compound statement". */
continue;
}
UPDATE_GLOBAL_REGS;
}
#endif /* FALCON_CPUASM */
void CPU_Reset(void)
{
#ifdef MONITOR_PROFILE
memset(CPU_instruction_count, 0, sizeof(CPU_instruction_count));
#endif
CPU_IRQ = 0;
CPU_regP = 0x34; /* The unused bit is always 1, I flag set! */
CPU_PutStatus(); /* Make sure flags are all updated */
CPU_regS = 0xff;
CPU_regPC = MEMORY_dGetWordAligned(0xfffc);
}
#if !defined(BASIC) && !defined(ASAP)
void CPU_StateSave(UBYTE SaveVerbose)
{
StateSav_SaveUBYTE(&CPU_regA, 1);
CPU_GetStatus(); /* Make sure flags are all updated */
StateSav_SaveUBYTE(&CPU_regP, 1);
StateSav_SaveUBYTE(&CPU_regS, 1);
StateSav_SaveUBYTE(&CPU_regX, 1);
StateSav_SaveUBYTE(&CPU_regY, 1);
StateSav_SaveUBYTE(&CPU_IRQ, 1);
MEMORY_StateSave(SaveVerbose);
StateSav_SaveUWORD(&CPU_regPC, 1);
}
void CPU_StateRead(UBYTE SaveVerbose, UBYTE StateVersion)
{
StateSav_ReadUBYTE(&CPU_regA, 1);
StateSav_ReadUBYTE(&CPU_regP, 1);
CPU_PutStatus(); /* Make sure flags are all updated */
StateSav_ReadUBYTE(&CPU_regS, 1);
StateSav_ReadUBYTE(&CPU_regX, 1);
StateSav_ReadUBYTE(&CPU_regY, 1);
StateSav_ReadUBYTE(&CPU_IRQ, 1);
MEMORY_StateRead(SaveVerbose, StateVersion);
StateSav_ReadUWORD(&CPU_regPC, 1);
}
#endif