LightAPRS-W-1.0/libraries/LightAPRS_Si5351Arduino/examples/si5351_calibration/si5351_calibration.ino

126 wiersze
3.8 KiB
C++
Executable File

/*
* si5351_calibration.ino - Simple calibration routine for the Si5351
* breakout board.
*
* Copyright 2015 - 2018 Paul Warren <pwarren@pwarren.id.au>
* Jason Milldrum <milldrum@gmail.com>
*
* Uses code from https://github.com/darksidelemm/open_radio_miniconf_2015
* and the old version of the calibration sketch
*
* This sketch is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* Foobar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "si5351.h"
#include "Wire.h"
Si5351 si5351;
int32_t cal_factor = 0;
int32_t old_cal = 0;
uint64_t rx_freq;
uint64_t target_freq = 1000000000ULL; // 10 MHz, in hundredths of hertz
void setup()
{
// Start serial and initialize the Si5351
Serial.begin(57600);
// The crystal load value needs to match in order to have an accurate calibration
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
// Start on target frequency
si5351.set_correction(cal_factor, SI5351_PLL_INPUT_XO);
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.set_freq(target_freq, SI5351_CLK0);
}
void loop()
{
si5351.update_status();
if (si5351.dev_status.SYS_INIT == 1)
{
Serial.println(F("Initialising Si5351, you shouldn't see many of these!"));
delay(500);
}
else
{
Serial.println();
Serial.println(F("Adjust until your frequency counter reads as close to 10 MHz as possible."));
Serial.println(F("Press 'q' when complete."));
vfo_interface();
}
}
static void flush_input(void)
{
while (Serial.available() > 0)
Serial.read();
}
static void vfo_interface(void)
{
rx_freq = target_freq;
cal_factor = old_cal;
Serial.println(F(" Up: r t y u i o p"));
Serial.println(F(" Down: f g h j k l ;"));
Serial.println(F(" Hz: 0.01 0.1 1 10 100 1K 10k"));
while (1)
{
if (Serial.available() > 0)
{
char c = Serial.read();
switch (c)
{
case 'q':
flush_input();
Serial.println();
Serial.print(F("Calibration factor is "));
Serial.println(cal_factor);
Serial.println(F("Setting calibration factor"));
si5351.set_correction(cal_factor, SI5351_PLL_INPUT_XO);
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
Serial.println(F("Resetting target frequency"));
si5351.set_freq(target_freq, SI5351_CLK0);
old_cal = cal_factor;
return;
case 'r': rx_freq += 1; break;
case 'f': rx_freq -= 1; break;
case 't': rx_freq += 10; break;
case 'g': rx_freq -= 10; break;
case 'y': rx_freq += 100; break;
case 'h': rx_freq -= 100; break;
case 'u': rx_freq += 1000; break;
case 'j': rx_freq -= 1000; break;
case 'i': rx_freq += 10000; break;
case 'k': rx_freq -= 10000; break;
case 'o': rx_freq += 100000; break;
case 'l': rx_freq -= 100000; break;
case 'p': rx_freq += 1000000; break;
case ';': rx_freq -= 1000000; break;
default:
// Do nothing
continue;
}
cal_factor = (int32_t)(target_freq - rx_freq) + old_cal;
si5351.set_correction(cal_factor, SI5351_PLL_INPUT_XO);
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.pll_reset(SI5351_PLLA);
si5351.set_freq(target_freq, SI5351_CLK0);
Serial.print(F("Current difference:"));
Serial.println(cal_factor);
}
}
}