Hamlib/src/misc.c

2601 wiersze
58 KiB
C

/*
* Hamlib Interface - toolbox
* Copyright (c) 2000-2011 by Stephane Fillod
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \addtogroup rig_internal
* @{
*/
/**
* \file misc.c
* \brief Miscellaneous utility routines
*/
#include <hamlib/config.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h> /* Standard input/output definitions */
#include <string.h> /* String function definitions */
#include <unistd.h> /* UNIX standard function definitions */
#include <fcntl.h> /* File control definitions */
#include <errno.h> /* Error number definitions */
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#include <math.h>
#include <hamlib/rig.h>
#include <hamlib/rotator.h>
#include <hamlib/amplifier.h>
#include "misc.h"
#include "serial.h"
#include "network.h"
#if defined(_WIN32)
# include <time.h>
# ifndef localtime_r
# define localtime_r(T,Tm) (localtime_s(Tm,T) ? NULL : Tm)
# endif
#endif
#ifdef __APPLE__
#include <time.h>
#if !defined(CLOCK_REALTIME) && !defined(CLOCK_MONOTONIC)
//
// MacOS < 10.12 does not have clock_gettime
//
// Contribution from github user "ra1nb0w"
//
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 6
typedef int clockid_t;
#include <sys/time.h>
#include <mach/mach_time.h>
static int clock_gettime(clockid_t clock_id, struct timespec *tp)
{
if (clock_id == CLOCK_REALTIME)
{
struct timeval t;
if (gettimeofday(&t, NULL) != 0)
{
return -1;
}
tp->tv_sec = t.tv_sec;
tp->tv_nsec = t.tv_usec * 1000;
}
else if (clock_id == CLOCK_MONOTONIC)
{
static mach_timebase_info_data_t info = { 0, 0 };
if (info.denom == 0)
{
mach_timebase_info(&info);
}
uint64_t t = mach_absolute_time() * info.numer / info.denom;
tp->tv_sec = t / 1000000000;
tp->tv_nsec = t % 1000000000;
}
else
{
errno = EINVAL;
return -1;
}
return 0;
}
#endif // !HAVE_CLOCK_GETTIME
#endif // __APPLE__
/**
* \brief Convert from binary to 4-bit BCD digits, little-endian
* \param bcd_data
* \param freq
* \param bcd_len
* \return bcd_data
*
* Convert a long long (e.g. frequency in Hz) to 4-bit BCD digits,
* packed two digits per octet, in little-endian order
* (e.g. byte order 90 78 56 34 12 for 1234567890 Hz).
*
* bcd_len is the number of BCD digits, usually 10 or 8 in 1-Hz units,
* and 6 digits in 100-Hz units for Tx offset data.
*
* Hope the compiler will do a good job optimizing it (esp. w/the 64bit freq)
*
* Returns a pointer to (unsigned char *)bcd_data.
*
* \sa to_bcd_be()
*/
unsigned char *HAMLIB_API to_bcd(unsigned char bcd_data[],
unsigned long long freq,
unsigned bcd_len)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
/* '450'/4-> 5,0;0,4 */
/* '450'/3-> 5,0;x,4 */
for (i = 0; i < bcd_len / 2; i++)
{
unsigned char a = freq % 10;
freq /= 10;
a |= (freq % 10) << 4;
freq /= 10;
bcd_data[i] = a;
}
if (bcd_len & 1)
{
bcd_data[i] &= 0xf0;
bcd_data[i] |= freq % 10; /* NB: high nibble is left uncleared */
}
return bcd_data;
}
/**
* \brief Convert BCD digits, little-endian, to a long long (e.g. frequency in Hz)
* \param bcd_data
* \param bcd_len
* \return binary result (e.g. frequency)
*
* Convert BCD digits, little-endian, (byte order 90 78 56 34 12
* for 1234567890 Hz) to a long long (e.g. frequency in Hz)
*
* bcd_len is the number of BCD digits.
*
* Hope the compiler will do a good job optimizing it (esp. w/ the 64bit freq)
*
* Returns frequency in Hz an unsigned long long integer.
*
* \sa from_bcd_be()
*/
unsigned long long HAMLIB_API from_bcd(const unsigned char bcd_data[],
unsigned bcd_len)
{
int i;
freq_t f = 0;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (bcd_len & 1)
{
f = bcd_data[bcd_len / 2] & 0x0f;
}
for (i = (bcd_len / 2) - 1; i >= 0; i--)
{
f *= 10;
f += bcd_data[i] >> 4;
f *= 10;
f += bcd_data[i] & 0x0f;
}
return f;
}
/**
* \brief Convert from binary to 4-bit BCD digits, big-endian
* \param bcd_data
* \param freq
* \param bcd_len
* \return bcd_data
*
* Same as to_bcd, but in big-endian order
* (e.g. byte order 12 34 56 78 90 for 1234567890 Hz)
*
* \sa to_bcd()
*/
unsigned char *HAMLIB_API to_bcd_be(unsigned char bcd_data[],
unsigned long long freq,
unsigned bcd_len)
{
int i;
/* '450'/4 -> 0,4;5,0 */
/* '450'/3 -> 4,5;0,x */
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (bcd_len & 1)
{
bcd_data[bcd_len / 2] &= 0x0f;
bcd_data[bcd_len / 2] |= (freq % 10) <<
4; /* NB: low nibble is left uncleared */
freq /= 10;
}
for (i = (bcd_len / 2) - 1; i >= 0; i--)
{
unsigned char a = freq % 10;
freq /= 10;
a |= (freq % 10) << 4;
freq /= 10;
bcd_data[i] = a;
}
return bcd_data;
}
/**
* \brief Convert 4-bit BCD digits to binary, big-endian
* \param bcd_data
* \param bcd_len
* \return binary result
*
* Same as from_bcd, but in big-endian order
* (e.g. byte order 12 34 56 78 90 for 1234567890 Hz)
*
* \sa from_bcd()
*/
unsigned long long HAMLIB_API from_bcd_be(const unsigned char bcd_data[],
unsigned bcd_len)
{
int i;
freq_t f = 0;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0; i < bcd_len / 2; i++)
{
f *= 10;
f += bcd_data[i] >> 4;
f *= 10;
f += bcd_data[i] & 0x0f;
}
if (bcd_len & 1)
{
f *= 10;
f += bcd_data[bcd_len / 2] >> 4;
}
return f;
}
size_t HAMLIB_API to_hex(size_t source_length, const unsigned char *source_data,
size_t dest_length, char *dest_data)
{
size_t i;
size_t length = source_length;
const unsigned char *source = source_data;
char *dest = dest_data;
if (source_length == 0 || dest_length == 0)
{
return 0;
}
if (source_length * 2 > dest_length)
{
length = dest_length / 2 - 1;
}
for (i = 0; i < length; i++)
{
SNPRINTF(dest, dest_length - 2 * i, "%02X", source[0]);
source++;
dest += 2;
}
return length;
}
/**
* \brief Convert duration of one morse code dot (element) to milliseconds at the given speed.
* \param wpm morse code speed in words per minute
* \return double duration in milliseconds
*
* The morse code speed is calculated using the standard based on word PARIS.
*
* "If you send PARIS 5 times in a minute (5WPM) you have sent 250 elements (using correct spacing).
* 250 elements into 60 seconds per minute = 240 milliseconds per element."
*
* Source: http://kent-engineers.com/codespeed.htm
*/
double morse_code_dot_to_millis(int wpm)
{
return 240.0 * (5.0 / (double) wpm);
}
/**
* \brief Convert duration of tenths of morse code dots to milliseconds at the given speed.
* \param tenths_of_dots number of 1/10ths of dots
* \param wpm morse code speed in words per minute
* \return int duration in milliseconds
*
* The morse code speed is calculated using the standard based on word PARIS.
*/
int dot10ths_to_millis(int dot10ths, int wpm)
{
return ceil(morse_code_dot_to_millis(wpm) * (double) dot10ths / 10.0);
}
/**
* \brief Convert duration in milliseconds to tenths of morse code dots at the given speed.
* \param millis duration in milliseconds
* \param wpm morse code speed in words per minute
* \return int number of 1/10ths of dots
*
* The morse code speed is calculated using the standard based on word PARIS.
*/
int millis_to_dot10ths(int millis, int wpm)
{
return ceil(millis / morse_code_dot_to_millis(wpm) * 10.0);
}
//! @cond Doxygen_Suppress
#ifndef llabs
#define llabs(a) ((a)<0?-(a):(a))
#endif
//! @endcond
/**
* \brief Pretty print a frequency
* \param str for result (may need up to 17 char)
* \param freq input in Hz
*
* rig_freq_snprintf?
* pretty print frequencies
* str must be long enough. max can be as long as 17 chars
*/
int HAMLIB_API sprintf_freq(char *str, int str_len, freq_t freq)
{
double f;
char *hz;
int decplaces = 10;
int retval;
// too verbose
//rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (llabs(freq) >= GHz(1))
{
hz = "GHz";
f = (double)freq / GHz(1);
}
else if (llabs(freq) >= MHz(1))
{
hz = "MHz";
f = (double)freq / MHz(1);
decplaces = 7;
}
else if (llabs(freq) >= kHz(1))
{
hz = "kHz";
f = (double)freq / kHz(1);
decplaces = 4;
}
else
{
hz = "Hz";
f = (double)freq;
decplaces = 1;
}
SNPRINTF(str, str_len, "%.*f %s", decplaces, f, hz);
retval = strlen(str);
return retval;
}
/**
* \brief Convert enum RIG_STATUS_... to printable string
* \param status RIG_STATUS_??
* \return string
*/
const char *HAMLIB_API rig_strstatus(enum rig_status_e status)
{
switch (status)
{
case RIG_STATUS_ALPHA:
return "Alpha";
case RIG_STATUS_UNTESTED:
return "Untested";
case RIG_STATUS_BETA:
return "Beta";
case RIG_STATUS_STABLE:
return "Stable";
case RIG_STATUS_BUGGY:
return "Buggy";
}
return "";
}
static const struct
{
rmode_t mode;
const char *str;
} mode_str[] =
{
{ RIG_MODE_AM, "AM" },
{ RIG_MODE_PKTAM, "AM-D" },
{ RIG_MODE_CW, "CW" },
{ RIG_MODE_USB, "USB" },
{ RIG_MODE_LSB, "LSB" },
{ RIG_MODE_RTTY, "RTTY" },
{ RIG_MODE_FM, "FM" },
{ RIG_MODE_PKTFM, "FM-D" },
{ RIG_MODE_WFM, "WFM" },
{ RIG_MODE_CWR, "CWR" },
{ RIG_MODE_CWR, "CW-R" },
{ RIG_MODE_RTTYR, "RTTYR" },
{ RIG_MODE_RTTYR, "RTTY-R" },
{ RIG_MODE_AMS, "AMS" },
{ RIG_MODE_PKTLSB, "PKTLSB" },
{ RIG_MODE_PKTUSB, "PKTUSB" },
{ RIG_MODE_PKTLSB, "LSB-D" },
{ RIG_MODE_PKTUSB, "USB-D" },
{ RIG_MODE_PKTFM, "PKTFM" },
{ RIG_MODE_PKTFMN, "PKTFMN" },
{ RIG_MODE_ECSSUSB, "ECSSUSB" },
{ RIG_MODE_ECSSLSB, "ECSSLSB" },
{ RIG_MODE_FAX, "FAX" },
{ RIG_MODE_SAM, "SAM" },
{ RIG_MODE_SAL, "SAL" },
{ RIG_MODE_SAH, "SAH" },
{ RIG_MODE_DSB, "DSB"},
{ RIG_MODE_FMN, "FMN" },
{ RIG_MODE_PKTAM, "PKTAM"},
{ RIG_MODE_P25, "P25"},
{ RIG_MODE_DSTAR, "D-STAR"},
{ RIG_MODE_DPMR, "DPMR"},
{ RIG_MODE_NXDNVN, "NXDN-VN"},
{ RIG_MODE_NXDN_N, "NXDN-N"},
{ RIG_MODE_DCR, "DCR"},
{ RIG_MODE_AMN, "AMN"},
{ RIG_MODE_PSK, "PSK"},
{ RIG_MODE_PSKR, "PSKR"},
{ RIG_MODE_C4FM, "C4FM"},
{ RIG_MODE_SPEC, "SPEC"},
{ RIG_MODE_CWN, "CWN"},
{ RIG_MODE_IQ, "IQ"},
{ RIG_MODE_NONE, "" },
};
/**
* \brief Convert alpha string to enum RIG_MODE
* \param s input alpha string
* \return enum RIG_MODE_??
*
* \sa rmode_t
*/
rmode_t HAMLIB_API rig_parse_mode(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; mode_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, mode_str[i].str))
{
return mode_str[i].mode;
}
}
rig_debug(RIG_DEBUG_WARN, "%s: mode '%s' not found\n", __func__, s);
return RIG_MODE_NONE;
}
/**
* \brief Convert enum RIG_MODE to alpha string
* \param mode RIG_MODE_...
* \return alpha string
*
* \sa rmode_t
*/
const char *HAMLIB_API rig_strrmode(rmode_t mode)
{
int i;
// only enable if needed for debugging -- too verbose otherwise
//rig_debug(RIG_DEBUG_TRACE, "%s called mode=0x%"PRXll"\n", __func__, mode);
if (mode == RIG_MODE_NONE)
{
return "";
}
for (i = 0 ; mode_str[i].str[0] != '\0'; i++)
{
if (mode == mode_str[i].mode)
{
return mode_str[i].str;
}
}
return "";
}
/**
* \brief Convert RIG_MODE or'd value to alpha string of all modes
* \param modes RIG_MODE or'd value
* \param buf char* of result buffer
* \param buflen length of buffer
* \return rig status -- RIG_ETRUNC if buffer not big enough
*
* \sa rmode_t
*/
int HAMLIB_API rig_strrmodes(rmode_t modes, char *buf, int buflen)
{
int i;
// only enable if needed for debugging -- too verbose otherwise
//rig_debug(RIG_DEBUG_TRACE, "%s called mode=0x%"PRXll"\n", __func__, mode);
if (modes == RIG_MODE_NONE)
{
SNPRINTF(buf, buflen, "NONE");
return RIG_OK;
}
for (i = 0 ; mode_str[i].str[0] != '\0'; i++)
{
if (modes & mode_str[i].mode)
{
char modebuf[16];
if (strlen(buf) == 0) { SNPRINTF(modebuf, sizeof(modebuf), "%s", mode_str[i].str); }
else { SNPRINTF(modebuf, sizeof(modebuf), " %s", mode_str[i].str); }
strncat(buf, modebuf, buflen - strlen(buf) - 1);
if (strlen(buf) > buflen - 10) { return -RIG_ETRUNC; }
}
}
return RIG_OK;
}
static const struct
{
vfo_t vfo;
const char *str;
} vfo_str[] =
{
{ RIG_VFO_A, "VFOA" },
{ RIG_VFO_B, "VFOB" },
{ RIG_VFO_C, "VFOC" },
{ RIG_VFO_CURR, "currVFO" },
{ RIG_VFO_MEM, "MEM" },
{ RIG_VFO_VFO, "VFO" },
{ RIG_VFO_TX, "TX" },
{ RIG_VFO_RX, "RX" },
{ RIG_VFO_MAIN, "Main" },
{ RIG_VFO_MAIN_A, "MainA" },
{ RIG_VFO_MAIN_B, "MainB" },
{ RIG_VFO_MAIN_C, "MainC" },
{ RIG_VFO_SUB, "Sub" },
{ RIG_VFO_SUB_A, "SubA" },
{ RIG_VFO_SUB_B, "SubB" },
{ RIG_VFO_SUB_C, "SubC" },
{ RIG_VFO_NONE, "None" },
{ RIG_VFO_OTHER, "otherVFO" },
{ 0xffffffff, "" },
};
/**
* \brief Convert alpha string to enum RIG_VFO_...
* \param s input alpha string
* \return RIG_VFO_...
*
* \sa RIG_VFO_A RIG_VFO_B RIG_VFO_C RIG_VFO_MAIN RIG_VFO_MAIN_A RIG_VFO_MAIN_B RIG_VFO_SUB RIG_VFO_SUB_A RIG_VFO_SUB_B RIG_VFO_VFO RIG_VFO_CURR RIG_VFO_MEM RIG_VFO_TX RIG_VFO_RX RIG_VFO_NONE
*/
vfo_t HAMLIB_API rig_parse_vfo(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; vfo_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, vfo_str[i].str))
{
rig_debug(RIG_DEBUG_CACHE, "%s: str='%s' vfo='%s'\n", __func__, vfo_str[i].str,
rig_strvfo(vfo_str[i].vfo));
return vfo_str[i].vfo;
}
}
rig_debug(RIG_DEBUG_ERR, "%s: '%s' not found so vfo='%s'\n", __func__, s,
rig_strvfo(RIG_VFO_NONE));
return RIG_VFO_NONE;
}
/**
* \brief Convert enum RIG_VFO_... to alpha string
* \param vfo RIG_VFO_...
* \return alpha string
*
* \sa RIG_VFO_A RIG_VFO_B RIG_VFO_C RIG_VFO_MAIN RIG_VFO_SUB RIG_VFO_VFO RIG_VFO_CURR RIG_VFO_MEM RIG_VFO_TX RIG_VFO_RX RIG_VFO_NONE
*/
const char *HAMLIB_API rig_strvfo(vfo_t vfo)
{
int i;
//a bit too verbose
//rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
for (i = 0 ; vfo_str[i].str[0] != '\0'; i++)
{
if (vfo == vfo_str[i].vfo)
{
//rig_debug(RIG_DEBUG_TRACE, "%s returning %s\n", __func__, vfo_str[i].str);
return vfo_str[i].str;
}
}
return "";
}
static const struct
{
setting_t func;
const char *str;
} rig_func_str[] =
{
{ RIG_FUNC_FAGC, "FAGC" },
{ RIG_FUNC_NB, "NB" },
{ RIG_FUNC_COMP, "COMP" },
{ RIG_FUNC_VOX, "VOX" },
{ RIG_FUNC_TONE, "TONE" },
{ RIG_FUNC_TSQL, "TSQL" },
{ RIG_FUNC_SBKIN, "SBKIN" },
{ RIG_FUNC_FBKIN, "FBKIN" },
{ RIG_FUNC_ANF, "ANF" },
{ RIG_FUNC_NR, "NR" },
{ RIG_FUNC_AIP, "AIP" },
{ RIG_FUNC_APF, "APF" },
{ RIG_FUNC_MON, "MON" },
{ RIG_FUNC_MN, "MN" },
{ RIG_FUNC_RF, "RF" },
{ RIG_FUNC_ARO, "ARO" },
{ RIG_FUNC_LOCK, "LOCK" },
{ RIG_FUNC_MUTE, "MUTE" },
{ RIG_FUNC_VSC, "VSC" },
{ RIG_FUNC_REV, "REV" },
{ RIG_FUNC_SQL, "SQL" },
{ RIG_FUNC_ABM, "ABM" },
{ RIG_FUNC_BC, "BC" },
{ RIG_FUNC_MBC, "MBC" },
{ RIG_FUNC_RIT, "RIT" },
{ RIG_FUNC_AFC, "AFC" },
{ RIG_FUNC_SATMODE, "SATMODE" },
{ RIG_FUNC_SCOPE, "SCOPE" },
{ RIG_FUNC_RESUME, "RESUME" },
{ RIG_FUNC_TBURST, "TBURST" },
{ RIG_FUNC_TUNER, "TUNER" },
{ RIG_FUNC_XIT, "XIT" },
{ RIG_FUNC_NB2, "NB2" },
{ RIG_FUNC_DSQL, "DSQL" },
{ RIG_FUNC_AFLT, "AFLT" },
{ RIG_FUNC_ANL, "ANL" },
{ RIG_FUNC_BC2, "BC2" },
{ RIG_FUNC_DUAL_WATCH, "DUAL_WATCH"},
{ RIG_FUNC_DIVERSITY, "DIVERSITY"},
{ RIG_FUNC_CSQL, "CSQL" },
{ RIG_FUNC_SCEN, "SCEN" },
{ RIG_FUNC_TRANSCEIVE, "TRANSCEIVE" },
{ RIG_FUNC_SPECTRUM, "SPECTRUM" },
{ RIG_FUNC_SPECTRUM_HOLD, "SPECTRUM_HOLD" },
{ RIG_FUNC_SEND_MORSE, "SEND_MORSE" },
{ RIG_FUNC_SEND_VOICE_MEM, "SEND_VOICE_MEM" },
{ RIG_FUNC_NONE, "" },
};
static const struct
{
setting_t func;
const char *str;
} rot_func_str[] =
{
{ ROT_FUNC_NONE, "" },
};
/**
* utility function to convert index to bit value
*
*/
uint64_t rig_idx2setting(int i)
{
return ((uint64_t)1) << i;
}
/**
* \brief Convert alpha string to enum RIG_FUNC_...
* \param s input alpha string
* \return RIG_FUNC_...
*
* \sa rig_func_e()
*/
setting_t HAMLIB_API rig_parse_func(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; rig_func_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, rig_func_str[i].str))
{
return rig_func_str[i].func;
}
}
return RIG_FUNC_NONE;
}
/**
* \brief Convert alpha string to enum ROT_FUNC_...
* \param s input alpha string
* \return ROT_FUNC_...
*
* \sa rot_func_e()
*/
setting_t HAMLIB_API rot_parse_func(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; rot_func_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, rot_func_str[i].str))
{
return rot_func_str[i].func;
}
}
return ROT_FUNC_NONE;
}
/**
* \brief Convert enum RIG_FUNC_... to alpha string
* \param func RIG_FUNC_...
* \return alpha string
*
* \sa rig_func_e()
*/
const char *HAMLIB_API rig_strfunc(setting_t func)
{
int i;
// too verbose to keep on unless debugging this in particular
//rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (func == RIG_FUNC_NONE)
{
return "";
}
for (i = 0; rig_func_str[i].str[0] != '\0'; i++)
{
if (func == rig_func_str[i].func)
{
return rig_func_str[i].str;
}
}
return "";
}
/**
* \brief Convert enum ROT_FUNC_... to alpha string
* \param func ROT_FUNC_...
* \return alpha string
*
* \sa rot_func_e()
*/
const char *HAMLIB_API rot_strfunc(setting_t func)
{
int i;
// too verbose to keep on unless debugging this in particular
//rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (func == ROT_FUNC_NONE)
{
return "";
}
for (i = 0; rot_func_str[i].str[0] != '\0'; i++)
{
if (func == rot_func_str[i].func)
{
return rot_func_str[i].str;
}
}
return "";
}
static const struct
{
setting_t level;
const char *str;
} rig_level_str[] =
{
{ RIG_LEVEL_PREAMP, "PREAMP" },
{ RIG_LEVEL_ATT, "ATT" },
{ RIG_LEVEL_VOXDELAY, "VOXDELAY" },
{ RIG_LEVEL_AF, "AF" },
{ RIG_LEVEL_RF, "RF" },
{ RIG_LEVEL_SQL, "SQL" },
{ RIG_LEVEL_IF, "IF" },
{ RIG_LEVEL_APF, "APF" },
{ RIG_LEVEL_NR, "NR" },
{ RIG_LEVEL_PBT_IN, "PBT_IN" },
{ RIG_LEVEL_PBT_OUT, "PBT_OUT" },
{ RIG_LEVEL_CWPITCH, "CWPITCH" },
{ RIG_LEVEL_RFPOWER, "RFPOWER" },
{ RIG_LEVEL_MICGAIN, "MICGAIN" },
{ RIG_LEVEL_KEYSPD, "KEYSPD" },
{ RIG_LEVEL_NOTCHF, "NOTCHF" },
{ RIG_LEVEL_COMP, "COMP" },
{ RIG_LEVEL_AGC, "AGC" },
{ RIG_LEVEL_BKINDL, "BKINDL" },
{ RIG_LEVEL_BALANCE, "BAL" },
{ RIG_LEVEL_METER, "METER" },
{ RIG_LEVEL_VOXGAIN, "VOXGAIN" },
{ RIG_LEVEL_ANTIVOX, "ANTIVOX" },
{ RIG_LEVEL_SLOPE_LOW, "SLOPE_LOW" },
{ RIG_LEVEL_SLOPE_HIGH, "SLOPE_HIGH" },
{ RIG_LEVEL_BKIN_DLYMS, "BKIN_DLYMS" },
{ RIG_LEVEL_RAWSTR, "RAWSTR" },
{ RIG_LEVEL_SWR, "SWR" },
{ RIG_LEVEL_ALC, "ALC" },
{ RIG_LEVEL_STRENGTH, "STRENGTH" },
{ RIG_LEVEL_RFPOWER_METER, "RFPOWER_METER" },
{ RIG_LEVEL_COMP_METER, "COMP_METER" },
{ RIG_LEVEL_VD_METER, "VD_METER" },
{ RIG_LEVEL_ID_METER, "ID_METER" },
{ RIG_LEVEL_NOTCHF_RAW, "NOTCHF_RAW" },
{ RIG_LEVEL_MONITOR_GAIN, "MONITOR_GAIN" },
{ RIG_LEVEL_NB, "NB" },
{ RIG_LEVEL_RFPOWER_METER_WATTS, "RFPOWER_METER_WATTS" },
{ RIG_LEVEL_SPECTRUM_MODE, "SPECTRUM_MODE" },
{ RIG_LEVEL_SPECTRUM_SPAN, "SPECTRUM_SPAN" },
{ RIG_LEVEL_SPECTRUM_EDGE_LOW, "SPECTRUM_EDGE_LOW" },
{ RIG_LEVEL_SPECTRUM_EDGE_HIGH, "SPECTRUM_EDGE_HIGH" },
{ RIG_LEVEL_SPECTRUM_SPEED, "SPECTRUM_SPEED" },
{ RIG_LEVEL_SPECTRUM_REF, "SPECTRUM_REF" },
{ RIG_LEVEL_SPECTRUM_AVG, "SPECTRUM_AVG" },
{ RIG_LEVEL_SPECTRUM_ATT, "SPECTRUM_ATT" },
{ RIG_LEVEL_TEMP_METER, "TEMP_METER" },
{ RIG_LEVEL_BAND_SELECT, "BAND_SELECT" },
{ RIG_LEVEL_NONE, "" },
};
static const struct
{
setting_t level;
const char *str;
} rot_level_str[] =
{
{ ROT_LEVEL_SPEED, "SPEED" },
{ ROT_LEVEL_NONE, "" },
};
static const struct
{
setting_t level;
const char *str;
} amp_level_str[] =
{
{ AMP_LEVEL_SWR, "SWR" },
{ AMP_LEVEL_NH, "NH" },
{ AMP_LEVEL_PF, "PF" },
{ AMP_LEVEL_PWR_INPUT, "PWRINPUT" },
{ AMP_LEVEL_PWR_FWD, "PWRFORWARD" },
{ AMP_LEVEL_PWR_REFLECTED, "PWRREFLECTED" },
{ AMP_LEVEL_PWR_PEAK, "PWRPEAK" },
{ AMP_LEVEL_FAULT, "FAULT" },
{ AMP_LEVEL_NONE, "" },
};
/**
* \brief Convert alpha string to enum RIG_LEVEL_...
* \param s input alpha string
* \return RIG_LEVEL_...
*
* \sa rig_level_e()
*/
setting_t HAMLIB_API rig_parse_level(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; rig_level_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, rig_level_str[i].str))
{
return rig_level_str[i].level;
}
}
return RIG_LEVEL_NONE;
}
/**
* \brief Convert alpha string to enum ROT_LEVEL_...
* \param s input alpha string
* \return ROT_LEVEL_...
*
* \sa rot_level_e()
*/
setting_t HAMLIB_API rot_parse_level(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; rot_level_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, rot_level_str[i].str))
{
return rot_level_str[i].level;
}
}
return ROT_LEVEL_NONE;
}
/**
* \brief Convert alpha string to enum AMP_LEVEL_...
* \param s input alpha string
* \return AMP_LEVEL_...
*
* \sa amp_level_e()
*/
setting_t HAMLIB_API amp_parse_level(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called level=%s\n", __func__, s);
rig_debug(RIG_DEBUG_VERBOSE, "%s called str=%s\n", __func__,
amp_level_str[0].str);
for (i = 0 ; amp_level_str[i].str[0] != '\0'; i++)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called checking=%s\n", __func__,
amp_level_str[i].str);
if (!strcmp(s, amp_level_str[i].str))
{
return amp_level_str[i].level;
}
}
return AMP_LEVEL_NONE;
}
/**
* \brief Convert enum RIG_LEVEL_... to alpha string
* \param level RIG_LEVEL_...
* \return alpha string
*
* \sa rig_level_e()
*/
const char *HAMLIB_API rig_strlevel(setting_t level)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (level == RIG_LEVEL_NONE)
{
return "";
}
for (i = 0; rig_level_str[i].str[0] != '\0'; i++)
{
if (level == rig_level_str[i].level)
{
return rig_level_str[i].str;
}
}
return "";
}
/**
* \brief Convert enum ROT_LEVEL_... to alpha string
* \param level ROT_LEVEL_...
* \return alpha string
*
* \sa rot_level_e()
*/
const char *HAMLIB_API rot_strlevel(setting_t level)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (level == ROT_LEVEL_NONE)
{
return "";
}
for (i = 0; rot_level_str[i].str[0] != '\0'; i++)
{
if (level == rot_level_str[i].level)
{
return rot_level_str[i].str;
}
}
return "";
}
/**
* \brief Convert enum AMP_LEVEL_... to alpha string
* \param level AMP_LEVEL_...
* \return alpha string
*
* \sa amp_level_e()
*/
const char *HAMLIB_API amp_strlevel(setting_t level)
{
int i;
//rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (level == AMP_LEVEL_NONE)
{
return "";
}
for (i = 0; amp_level_str[i].str[0] != '\0'; i++)
{
if (level == amp_level_str[i].level)
{
return amp_level_str[i].str;
}
}
return "";
}
static const struct
{
setting_t parm;
const char *str;
} rig_parm_str[] =
{
{ RIG_PARM_ANN, "ANN" },
{ RIG_PARM_APO, "APO" },
{ RIG_PARM_BACKLIGHT, "BACKLIGHT" },
{ RIG_PARM_BEEP, "BEEP" },
{ RIG_PARM_TIME, "TIME" },
{ RIG_PARM_BAT, "BAT" },
{ RIG_PARM_KEYLIGHT, "KEYLIGHT"},
{ RIG_PARM_SCREENSAVER, "SCREENSAVER"},
{ RIG_PARM_NONE, "" },
};
static const struct
{
setting_t parm;
const char *str;
} rot_parm_str[] =
{
{ ROT_PARM_NONE, "" },
};
/**
* \brief Convert alpha string to RIG_PARM_...
* \param s input alpha string
* \return RIG_PARM_...
*
* \sa rig_parm_e()
*/
setting_t HAMLIB_API rig_parse_parm(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; rig_parm_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, rig_parm_str[i].str))
{
return rig_parm_str[i].parm;
}
}
return RIG_PARM_NONE;
}
/**
* \brief Convert alpha string to ROT_PARM_...
* \param s input alpha string
* \return ROT_PARM_...
*
* \sa rot_parm_e()
*/
setting_t HAMLIB_API rot_parse_parm(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; rot_parm_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, rot_parm_str[i].str))
{
return rot_parm_str[i].parm;
}
}
return ROT_PARM_NONE;
}
/**
* \brief Convert enum RIG_PARM_... to alpha string
* \param parm RIG_PARM_...
* \return alpha string
*
* \sa rig_parm_e()
*/
const char *HAMLIB_API rig_strparm(setting_t parm)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (parm == RIG_PARM_NONE)
{
return "";
}
for (i = 0; rig_parm_str[i].str[0] != '\0'; i++)
{
if (parm == rig_parm_str[i].parm)
{
return rig_parm_str[i].str;
}
}
return "";
}
/**
* \brief Convert enum ROT_PARM_... to alpha string
* \param parm ROT_PARM_...
* \return alpha string
*
* \sa rot_parm_e()
*/
const char *HAMLIB_API rot_strparm(setting_t parm)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (parm == ROT_PARM_NONE)
{
return "";
}
for (i = 0; rot_parm_str[i].str[0] != '\0'; i++)
{
if (parm == rot_parm_str[i].parm)
{
return rot_parm_str[i].str;
}
}
return "";
}
static const struct
{
enum agc_level_e level;
const char *str;
} rig_agc_level_str[] =
{
{ RIG_AGC_OFF, "OFF" },
{ RIG_AGC_SUPERFAST, "SUPERFAST" },
{ RIG_AGC_FAST, "FAST" },
{ RIG_AGC_SLOW, "SLOW" },
{ RIG_AGC_USER, "USER" },
{ RIG_AGC_MEDIUM, "MEDIUM" },
{ RIG_AGC_AUTO, "AUTO" },
{ -1, "" },
};
/**
* \brief Convert enum RIG_AGC_... to alpha string
* \param mode RIG_AGC_...
* \return alpha string
*/
const char *HAMLIB_API rig_stragclevel(enum agc_level_e level)
{
int i;
if (level < 0)
{
return "";
}
for (i = 0; rig_agc_level_str[i].str[0] != '\0'; i++)
{
if (level == rig_agc_level_str[i].level)
{
return rig_agc_level_str[i].str;
}
}
return "";
}
/**
* \brief Convert a enum agc_level_e to value
* \param integer...
* \return agc_level_e value
*/
value_t rig_valueagclevel(enum agc_level_e agcLevel)
{
value_t value;
if (agcLevel == RIG_AGC_OFF) { value.i = 0; }
else if (agcLevel == RIG_AGC_SUPERFAST) { value.i = 1; }
else if (agcLevel == RIG_AGC_FAST) { value.i = 2; }
else if (agcLevel == RIG_AGC_SLOW) { value.i = 3; }
else if (agcLevel == RIG_AGC_USER) { value.i = 4; }
else if (agcLevel == RIG_AGC_MEDIUM) { value.i = 5; }
else { value.i = 6; } //RIG_AGC_AUTO
return value;
}
/**
* \brief Convert a value to agc_level_e -- constrains the range
* \param integer...
* \return agc_level_e
*/
enum agc_level_e rig_levelagcvalue(int agcValue)
{
enum agc_level_e agcLevel;
switch (agcValue)
{
case 0: agcLevel = RIG_AGC_OFF; break;
case 1: agcLevel = RIG_AGC_SUPERFAST; break;
case 2: agcLevel = RIG_AGC_FAST; break;
case 3: agcLevel = RIG_AGC_SLOW; break;
case 4: agcLevel = RIG_AGC_USER; break;
case 5: agcLevel = RIG_AGC_MEDIUM; break;
case 6: agcLevel = RIG_AGC_AUTO; break;
default: agcLevel = RIG_AGC_AUTO; break;
}
return agcLevel;
}
/**
* \brief Convert AGC string... to agc_level_e
* \param mode AGC string...
* \return agc_level_e
*/
enum agc_level_e rig_levelagcstr(char *agcString)
{
enum agc_level_e agcLevel;
if (strcmp(agcString, "OFF") == 0) { agcLevel = RIG_AGC_OFF; }
else if (strcmp(agcString, "SUPERFAST") == 0) { agcLevel = RIG_AGC_SUPERFAST; }
else if (strcmp(agcString, "FAST") == 0) { agcLevel = RIG_AGC_FAST; }
else if (strcmp(agcString, "SLOW") == 0) { agcLevel = RIG_AGC_SLOW; }
else if (strcmp(agcString, "USER") == 0) { agcLevel = RIG_AGC_USER; }
else if (strcmp(agcString, "MEDIUM") == 0) { agcLevel = RIG_AGC_MEDIUM; }
else { agcLevel = RIG_AGC_AUTO; }
return agcLevel;
}
static const struct
{
vfo_op_t vfo_op;
const char *str;
} vfo_op_str[] =
{
{ RIG_OP_CPY, "CPY" },
{ RIG_OP_XCHG, "XCHG" },
{ RIG_OP_FROM_VFO, "FROM_VFO" },
{ RIG_OP_TO_VFO, "TO_VFO" },
{ RIG_OP_MCL, "MCL" },
{ RIG_OP_UP, "UP" },
{ RIG_OP_DOWN, "DOWN" },
{ RIG_OP_BAND_UP, "BAND_UP" },
{ RIG_OP_BAND_DOWN, "BAND_DOWN" },
{ RIG_OP_LEFT, "LEFT" },
{ RIG_OP_RIGHT, "RIGHT" },
{ RIG_OP_TUNE, "TUNE" },
{ RIG_OP_TOGGLE, "TOGGLE" },
{ RIG_OP_NONE, "" },
};
/**
* \brief Convert alpha string to enum RIG_OP_...
* \param s alpha string
* \return RIG_OP_...
*
* \sa vfo_op_t()
*/
vfo_op_t HAMLIB_API rig_parse_vfo_op(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; vfo_op_str[i].str[0] != '\0'; i++)
{
if (!strcmp(s, vfo_op_str[i].str))
{
return vfo_op_str[i].vfo_op;
}
}
return RIG_OP_NONE;
}
/**
* \brief Convert enum RIG_OP_... to alpha string
* \param op RIG_OP_...
* \return alpha string
*
* \sa vfo_op_t()
*/
const char *HAMLIB_API rig_strvfop(vfo_op_t op)
{
int i;
// too verbose
// rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0; vfo_op_str[i].str[0] != '\0'; i++)
{
if (op == vfo_op_str[i].vfo_op)
{
return vfo_op_str[i].str;
}
}
return "";
}
static const struct
{
scan_t rscan;
const char *str;
} scan_str[] =
{
{ RIG_SCAN_STOP, "STOP" },
{ RIG_SCAN_MEM, "MEM" },
{ RIG_SCAN_SLCT, "SLCT" },
{ RIG_SCAN_PRIO, "PRIO" },
{ RIG_SCAN_PROG, "PROG" },
{ RIG_SCAN_DELTA, "DELTA" },
{ RIG_SCAN_VFO, "VFO" },
{ RIG_SCAN_PLT, "PLT" },
{ RIG_SCAN_NONE, "" },
{ -1, NULL }
};
/**
* \brief Convert alpha string to enum RIG_SCAN_...
* \param s alpha string
* \return RIG_SCAN_...
*
* \sa scan_t()
*/
scan_t HAMLIB_API rig_parse_scan(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; scan_str[i].str[0] != '\0'; i++)
{
if (strcmp(s, scan_str[i].str) == 0)
{
return scan_str[i].rscan;
}
}
return RIG_SCAN_NONE;
}
/**
* \brief Convert enum RIG_SCAN_... to alpha string
* \param rscan RIG_SCAN_...
* \return alpha string
*
* \sa scan_t()
*/
const char *HAMLIB_API rig_strscan(scan_t rscan)
{
int i;
// too verbose
// rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (rscan == RIG_SCAN_NONE)
{
return "";
}
for (i = 0; scan_str[i].str[0] != '\0'; i++)
{
if (rscan == scan_str[i].rscan)
{
return scan_str[i].str;
}
}
return "";
}
/**
* \brief convert enum RIG_RPT_SHIFT_... to printable character
* \param shift RIG_RPT_SHIFT_??
* \return alpha character
*/
const char *HAMLIB_API rig_strptrshift(rptr_shift_t shift)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
switch (shift)
{
case RIG_RPT_SHIFT_MINUS:
return "-";
case RIG_RPT_SHIFT_PLUS:
return "+";
case RIG_RPT_SHIFT_NONE:
return "None";
}
return NULL;
}
/**
* \brief Convert alpha char to enum RIG_RPT_SHIFT_...
* \param s alpha char
* \return RIG_RPT_SHIFT_...
*/
rptr_shift_t HAMLIB_API rig_parse_rptr_shift(const char *s)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (strcmp(s, "+") == 0)
{
return RIG_RPT_SHIFT_PLUS;
}
else if (strcmp(s, "-") == 0)
{
return RIG_RPT_SHIFT_MINUS;
}
else
{
return RIG_RPT_SHIFT_NONE;
}
}
static const struct
{
chan_type_t mtype;
const char *str;
} mtype_str[] =
{
{ RIG_MTYPE_MEM, "MEM" },
{ RIG_MTYPE_EDGE, "EDGE" },
{ RIG_MTYPE_CALL, "CALL" },
{ RIG_MTYPE_MEMOPAD, "MEMOPAD" },
{ RIG_MTYPE_SAT, "SAT" },
{ RIG_MTYPE_BAND, "BAND" },
{ RIG_MTYPE_PRIO, "PRIO" },
{ RIG_MTYPE_NONE, "" },
};
/**
* \brief Convert alpha string to enum RIG_MTYPE_...
* \param s alpha string
* \return RIG_MTYPE_...
*
* \sa chan_type_t()
*/
chan_type_t HAMLIB_API rig_parse_mtype(const char *s)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
for (i = 0 ; mtype_str[i].str[0] != '\0'; i++)
{
if (strcmp(s, mtype_str[i].str) == 0)
{
return mtype_str[i].mtype;
}
}
return RIG_MTYPE_NONE;
}
/**
* \brief Convert enum RIG_MTYPE_... to alpha string
* \param mtype RIG_MTYPE_...
* \return alpha string
*
* \sa chan_type_t()
*/
const char *HAMLIB_API rig_strmtype(chan_type_t mtype)
{
int i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (mtype == RIG_MTYPE_NONE)
{
return "";
}
for (i = 0; mtype_str[i].str[0] != '\0'; i++)
{
if (mtype == mtype_str[i].mtype)
{
return mtype_str[i].str;
}
}
return "";
}
static const struct
{
enum rig_spectrum_mode_e mode;
const char *str;
} rig_spectrum_mode_str[] =
{
{ RIG_SPECTRUM_MODE_CENTER, "CENTER" },
{ RIG_SPECTRUM_MODE_FIXED, "FIXED" },
{ RIG_SPECTRUM_MODE_CENTER_SCROLL, "CENTER_SCROLL" },
{ RIG_SPECTRUM_MODE_FIXED_SCROLL, "FIXED_SCROLL" },
{ RIG_SPECTRUM_MODE_NONE, "" },
};
/**
* \brief Convert enum RIG_SPECTRUM_MODE_... to alpha string
* \param mode RIG_SPECTRUM_MODE_...
* \return alpha string
*/
const char *HAMLIB_API rig_strspectrummode(enum rig_spectrum_mode_e mode)
{
int i;
if (mode == RIG_SPECTRUM_MODE_NONE)
{
return "";
}
for (i = 0; rig_spectrum_mode_str[i].str[0] != '\0'; i++)
{
if (mode == rig_spectrum_mode_str[i].mode)
{
return rig_spectrum_mode_str[i].str;
}
}
return "";
}
static long timediff(const struct timeval *tv1, const struct timeval *tv2)
{
struct timeval tv;
tv.tv_usec = tv1->tv_usec - tv2->tv_usec;
tv.tv_sec = tv1->tv_sec - tv2->tv_sec;
return ((tv.tv_sec * 1000L) + (tv.tv_usec / 1000L));
}
/**
* \brief Helper for checking cache timeout
* \param tv pointer to timeval, date of cache
* \param timeout duration of cache validity, in millisec
* \return 1 when timed out, 0 when cache shall be used
*/
int HAMLIB_API rig_check_cache_timeout(const struct timeval *tv, int timeout)
{
struct timeval curr;
long t;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (tv->tv_sec == 0 && tv->tv_usec == 0)
{
rig_debug(RIG_DEBUG_VERBOSE,
"%s: forced cache timeout\n",
__func__);
return 1;
}
gettimeofday(&curr, NULL);
t = timediff(&curr, tv);
if (t < timeout)
{
rig_debug(RIG_DEBUG_VERBOSE,
"%s: using cache (%ld ms)\n",
__func__,
t);
return 0;
}
else
{
rig_debug(RIG_DEBUG_VERBOSE,
"%s: cache timed out (%ld ms)\n",
__func__,
t);
return 1;
}
}
/**
* \brief Helper for forcing cache timeout next call
*
* This function is typically to be called in backend_set_* functions,
* so that a sequence:
*
\code
rig_get_freq();
rig_set_freq();
rig_get_freq();
\endcode
*
* doesn't return a bogus (cached) value in the last rig_get_freq().
*
* \param tv pointer to timeval to be reset
*/
void HAMLIB_API rig_force_cache_timeout(struct timeval *tv)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
tv->tv_sec = 0;
tv->tv_usec = 0;
}
//! @cond Doxygen_Suppress
int no_restore_ai;
//! @endcond
//! @cond Doxygen_Suppress
void HAMLIB_API rig_no_restore_ai()
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
no_restore_ai = -1;
}
//! @cond Doxygen_Suppress
double HAMLIB_API elapsed_ms(struct timespec *start, int option)
{
// If option then we are starting the timing, else we get elapsed
struct timespec stop;
double elapsed_msec;
if (option == HAMLIB_ELAPSED_SET)
{
start->tv_sec = start->tv_nsec = 0;
}
stop = *start; // just to suppress some compiler warnings
//rig_debug(RIG_DEBUG_TRACE, "%s: start = %ld,%ld\n", __func__,
// (long)start->tv_sec, (long)start->tv_nsec);
switch (option)
{
case HAMLIB_ELAPSED_GET:
if (start->tv_nsec == 0) // if we haven't done SET yet
{
clock_gettime(CLOCK_REALTIME, start);
return 1000 * 1000;
}
clock_gettime(CLOCK_REALTIME, &stop);
break;
case HAMLIB_ELAPSED_SET:
clock_gettime(CLOCK_REALTIME, start);
//rig_debug(RIG_DEBUG_TRACE, "%s: after gettime, start = %ld,%ld\n", __func__,
// (long)start->tv_sec, (long)start->tv_nsec);
return 999 * 1000; // so we can tell the difference in debug where we came from
break;
case HAMLIB_ELAPSED_INVALIDATE:
clock_gettime(CLOCK_REALTIME, start);
stop = *start;
start->tv_sec -= 10; // ten seconds should be more than enough
break;
}
elapsed_msec = ((stop.tv_sec - start->tv_sec) + (stop.tv_nsec / 1e9 -
start->tv_nsec / 1e9)) * 1e3;
//rig_debug(RIG_DEBUG_TRACE, "%s: elapsed_msecs=%.0f\n", __func__, elapsed_msec);
if (elapsed_msec < 0 || option == HAMLIB_ELAPSED_INVALIDATE) { return 1000000; }
return elapsed_msec;
}
int HAMLIB_API rig_get_cache_timeout_ms(RIG *rig, hamlib_cache_t selection)
{
rig_debug(RIG_DEBUG_TRACE, "%s: called selection=%d\n", __func__, selection);
return rig->state.cache.timeout_ms;
}
int HAMLIB_API rig_set_cache_timeout_ms(RIG *rig, hamlib_cache_t selection,
int ms)
{
rig_debug(RIG_DEBUG_TRACE, "%s: called selection=%d, ms=%d\n", __func__,
selection, ms);
rig->state.cache.timeout_ms = ms;
return RIG_OK;
}
static char *funcname = "Unknown";
static int linenum = 0;
#undef vfo_fixup
vfo_t HAMLIB_API vfo_fixup2a(RIG *rig, vfo_t vfo, split_t split,
const char *func, int line)
{
funcname = (char *)func;
linenum = (int)line;
return vfo_fixup(rig, vfo, split);
}
// we're mapping our VFO here to work with either VFO A/B rigs or Main/Sub
// Hamlib uses VFO_A and VFO_B as TX/RX as of 2021-04-13
// So we map these to Main/Sub as required
vfo_t HAMLIB_API vfo_fixup(RIG *rig, vfo_t vfo, split_t split)
{
rig_debug(RIG_DEBUG_TRACE, "%s:(from %s:%d) vfo=%s, vfo_curr=%s, split=%d\n",
__func__, funcname, linenum,
rig_strvfo(vfo), rig_strvfo(rig->state.current_vfo), split);
if (vfo == RIG_VFO_NONE) { vfo = RIG_VFO_A; }
if (vfo == RIG_VFO_CURR || vfo == RIG_VFO_VFO)
{
rig_debug(RIG_DEBUG_TRACE, "%s: Leaving currVFO alone\n", __func__);
return vfo; // don't modify vfo for RIG_VFO_CURR
}
if (vfo == RIG_VFO_OTHER)
{
switch (rig->state.current_vfo)
{
case RIG_VFO_A:
return RIG_VFO_B;
case RIG_VFO_MAIN:
return RIG_VFO_SUB;
case RIG_VFO_B:
return RIG_VFO_A;
case RIG_VFO_SUB:
return RIG_VFO_MAIN;
case RIG_VFO_SUB_A:
return RIG_VFO_SUB_B;
case RIG_VFO_SUB_B:
return RIG_VFO_SUB_A;
}
}
if (vfo == RIG_VFO_RX)
{
vfo = rig->state.rx_vfo;
}
else if (vfo == RIG_VFO_A || vfo == RIG_VFO_MAIN)
{
vfo = RIG_VFO_A; // default to mapping VFO_MAIN to VFO_A
if (VFO_HAS_MAIN_SUB_ONLY) { vfo = RIG_VFO_MAIN; }
if (VFO_HAS_MAIN_SUB_A_B_ONLY) { vfo = RIG_VFO_MAIN; }
}
else if (vfo == RIG_VFO_TX)
{
#if 0
int retval;
split_t split = 0;
// get split if we can -- it will default to off otherwise
// maybe split/satmode/vfo/freq/mode can be cached for rigs
// that don't have read capability or get_vfo like Icom?
// Icom's lack of get_vfo is problematic in this respect
// If we cache vfo or others than twiddling the rig may cause problems
retval = rig_get_split(rig, vfo, &split);
if (retval != RIG_OK)
{
split = rig->state.cache.split;
}
#endif
int satmode = rig->state.cache.satmode;
rig_debug(RIG_DEBUG_VERBOSE, "%s(%d): split=%d, vfo==%s tx_vfo=%s\n", __func__,
__LINE__, split, rig_strvfo(vfo), rig_strvfo(rig->state.tx_vfo));
//if (vfo == RIG_VFO_TX) { vfo = rig->state.tx_vfo; RETURNFUNC(RIG_OK); }
if (VFO_HAS_MAIN_SUB_ONLY && !split && !satmode && vfo != RIG_VFO_B) { vfo = RIG_VFO_MAIN; }
else if (VFO_HAS_MAIN_SUB_ONLY && (split || satmode || vfo == RIG_VFO_B)) { vfo = RIG_VFO_SUB; }
else if (VFO_HAS_MAIN_SUB_A_B_ONLY && split) { vfo = RIG_VFO_B; }
else if (VFO_HAS_MAIN_SUB_A_B_ONLY && satmode) { vfo = RIG_VFO_SUB; }
else if (VFO_HAS_A_B_ONLY) { vfo = split ? RIG_VFO_B : RIG_VFO_A; }
rig_debug(RIG_DEBUG_TRACE,
"%s: RIG_VFO_TX changed to %s, split=%d, satmode=%d\n", __func__,
rig_strvfo(vfo), split, satmode);
}
else if (vfo == RIG_VFO_B || vfo == RIG_VFO_SUB)
{
vfo = RIG_VFO_B; // default to VFO_B
if (VFO_HAS_MAIN_SUB_ONLY) { vfo = RIG_VFO_SUB; }
if (VFO_HAS_MAIN_SUB_A_B_ONLY) { vfo = RIG_VFO_SUB; }
rig_debug(RIG_DEBUG_TRACE, "%s: final vfo=%s\n", __func__, rig_strvfo(vfo));
}
return vfo;
}
int HAMLIB_API parse_hoststr(char *hoststr, int hoststr_len, char host[256],
char port[6])
{
unsigned int net1, net2, net3, net4, net5, net6, net7, net8;
char dummy[6], link[32], *p;
host[0] = 0;
port[0] = 0;
dummy[0] = 0;
// Exclude any names that aren't a host:port format
// Handle device names 1st
if (strstr(hoststr, "/dev")) { return -1; }
if (strstr(hoststr, "/")) { return -1; } // probably a path so not a hoststr
if (strncasecmp(hoststr, "com", 3) == 0) { return -1; }
// escaped COM port like \\.\COM3 or \.\COM3
if (strstr(hoststr, "\\.\\")) { return -1; }
// Now let's try and parse a host:port thing
// bracketed IPV6 with optional port
int n = sscanf(hoststr, "[%255[^]]]:%5s", host, port);
if (n >= 1)
{
return RIG_OK;
}
// non-bracketed full IPV6 with optional link addr
n = sscanf(hoststr, "%x:%x:%x:%x:%x:%x:%x:%x%%%31[^:]:%5s", &net1, &net2, &net3,
&net4, &net5, &net6, &net7, &net8, link, port);
if (n == 8 || n == 9)
{
strcpy(host, hoststr);
return RIG_OK;
}
else if (n == 10)
{
strcpy(host, hoststr);
p = strrchr(host, ':'); // remove port from host
*p = 0;
return RIG_OK;
}
// non-bracketed IPV6 with optional link addr and optional port
n = sscanf(hoststr, "%x::%x:%x:%x:%x%%%31[^:]:%5s", &net1, &net2, &net3,
&net4, &net5, link, port);
if (strchr(hoststr, '%') && (n == 5 || n == 6))
{
strcpy(host, hoststr);
return RIG_OK;
}
else if (n == 7)
{
strcpy(host, hoststr);
p = strrchr(host, ':'); // remove port from host
*p = 0;
return RIG_OK;
}
// non-bracketed IPV6 short form with optional port
n = sscanf(hoststr, "%x::%x:%x:%x:%x:%5[0-9]%1s", &net1, &net2, &net3, &net4,
&net5, port, dummy);
if (n == 5)
{
strcpy(host, hoststr);
return RIG_OK;
}
else if (n == 6)
{
strcpy(host, hoststr);
p = strrchr(host, ':');
*p = 0;
return RIG_OK;
}
else if (n == 7)
{
return -RIG_EINVAL;
}
// bracketed localhost
if (strstr(hoststr, "::1"))
{
n = sscanf(hoststr, "::1%5s", dummy);
strcpy(host, hoststr);
if (n == 1)
{
p = strrchr(host, ':');
*p = 0;
strcpy(port, p + 1);
}
return RIG_OK;
}
if (sscanf(hoststr, ":%5[0-9]%1s", port,
dummy) == 1) // just a port if you please
{
SNPRINTF(hoststr, hoststr_len, "%s:%s\n", "localhost", port);
rig_debug(RIG_DEBUG_VERBOSE, "%s: hoststr=%s\n", __func__, hoststr);
return RIG_OK;
}
// if we're here then we must have a hostname
n = sscanf(hoststr, "%255[^:]:%5[0-9]%1s", host, port, dummy);
if (n >= 1 && strlen(dummy) == 0) { return RIG_OK; }
printf("Unhandled host=%s\n", hoststr);
return -1;
}
//K3 was showing stacked command replies so re-enabling this
//#define RIG_FLUSH_REMOVE
int HAMLIB_API rig_flush(hamlib_port_t *port)
{
#ifndef RIG_FLUSH_REMOVE
rig_debug(RIG_DEBUG_TRACE, "%s: called for %s device\n", __func__,
port->type.rig == RIG_PORT_SERIAL ? "serial" : "network");
if (port->type.rig == RIG_PORT_NETWORK
|| port->type.rig == RIG_PORT_UDP_NETWORK)
{
network_flush(port);
return RIG_OK;
}
if (port->type.rig != RIG_PORT_SERIAL)
{
rig_debug(RIG_DEBUG_WARN,
"%s: Expected serial port type!!\nWhat is this rig?\n", __func__);
}
return serial_flush(port); // we must be on serial port
#else
return RIG_OK;
#endif
}
static const struct
{
rot_status_t status;
const char *str;
} rot_status_str[] =
{
{ ROT_STATUS_BUSY, "BUSY" },
{ ROT_STATUS_MOVING, "MOVING" },
{ ROT_STATUS_MOVING_AZ, "MOVING_AZ" },
{ ROT_STATUS_MOVING_LEFT, "MOVING_LEFT" },
{ ROT_STATUS_MOVING_RIGHT, "MOVING_RIGHT" },
{ ROT_STATUS_MOVING_EL, "MOVING_EL" },
{ ROT_STATUS_MOVING_UP, "MOVING_UP" },
{ ROT_STATUS_MOVING_DOWN, "MOVING_DOWN" },
{ ROT_STATUS_LIMIT_UP, "LIMIT_UP" },
{ ROT_STATUS_LIMIT_DOWN, "LIMIT_DOWN" },
{ ROT_STATUS_LIMIT_LEFT, "LIMIT_LEFT" },
{ ROT_STATUS_LIMIT_RIGHT, "LIMIT_RIGHT" },
{ ROT_STATUS_OVERLAP_UP, "OVERLAP_UP" },
{ ROT_STATUS_OVERLAP_DOWN, "OVERLAP_DOWN" },
{ ROT_STATUS_OVERLAP_LEFT, "OVERLAP_LEFT" },
{ ROT_STATUS_OVERLAP_RIGHT, "OVERLAP_RIGHT" },
{ 0xffffff, "" },
};
/**
* \brief Convert enum ROT_STATUS_... to a string
* \param status ROT_STATUS_...
* \return the corresponding string value
*/
const char *HAMLIB_API rot_strstatus(rot_status_t status)
{
int i;
for (i = 0 ; rot_status_str[i].str[0] != '\0'; i++)
{
if (status == rot_status_str[i].status)
{
return rot_status_str[i].str;
}
}
return "";
}
/**
* \brief Get pointer to rig function instead of using rig->caps
* \param RIG* and rig_function_e
* \return the corresponding function pointer
*/
void *HAMLIB_API rig_get_function_ptr(rig_model_t rig_model,
enum rig_function_e rig_function)
{
const struct rig_caps *caps = rig_get_caps(rig_model);
switch (rig_function)
{
case RIG_FUNCTION_INIT:
return caps->rig_init;
case RIG_FUNCTION_CLEANUP:
return caps->rig_cleanup;
case RIG_FUNCTION_OPEN:
return caps->rig_open;
case RIG_FUNCTION_CLOSE:
return caps->rig_close;
case RIG_FUNCTION_SET_FREQ:
return caps->set_freq;
case RIG_FUNCTION_GET_FREQ:
return caps->get_freq;
case RIG_FUNCTION_SET_MODE:
return caps->set_mode;
case RIG_FUNCTION_GET_MODE:
return caps->get_mode;
case RIG_FUNCTION_SET_VFO:
return caps->set_vfo;
case RIG_FUNCTION_GET_VFO:
return caps->get_vfo;
case RIG_FUNCTION_SET_PTT:
return caps->set_ptt;
case RIG_FUNCTION_GET_PTT:
return caps->get_ptt;
case RIG_FUNCTION_GET_DCD:
return caps->get_dcd;
case RIG_FUNCTION_SET_RPTR_SHIFT:
return caps->set_rptr_shift;
case RIG_FUNCTION_GET_RPTR_SHIFT:
return caps->get_rptr_shift;
case RIG_FUNCTION_SET_RPTR_OFFS:
return caps->set_rptr_offs;
case RIG_FUNCTION_GET_RPTR_OFFS:
return caps->get_rptr_offs;
case RIG_FUNCTION_SET_SPLIT_FREQ:
return caps->set_split_freq;
case RIG_FUNCTION_GET_SPLIT_FREQ:
return caps->get_split_freq;
case RIG_FUNCTION_SET_SPLIT_MODE:
return caps->set_split_mode;
case RIG_FUNCTION_SET_SPLIT_FREQ_MODE:
return caps->set_split_freq_mode;
case RIG_FUNCTION_GET_SPLIT_FREQ_MODE:
return caps->get_split_freq_mode;
case RIG_FUNCTION_SET_SPLIT_VFO:
return caps->set_split_vfo;
case RIG_FUNCTION_GET_SPLIT_VFO:
return caps->get_split_vfo;
case RIG_FUNCTION_SET_RIT:
return caps->set_rit;
case RIG_FUNCTION_GET_RIT:
return caps->get_rit;
case RIG_FUNCTION_SET_XIT:
return caps->set_xit;
case RIG_FUNCTION_GET_XIT:
return caps->get_xit;
case RIG_FUNCTION_SET_TS:
return caps->set_ts;
case RIG_FUNCTION_GET_TS:
return caps->get_ts;
case RIG_FUNCTION_SET_DCS_CODE:
return caps->set_dcs_code;
case RIG_FUNCTION_GET_DCS_CODE:
return caps->get_dcs_code;
case RIG_FUNCTION_SET_TONE:
return caps->set_tone;
case RIG_FUNCTION_GET_TONE:
return caps->get_tone;
case RIG_FUNCTION_SET_CTCSS_TONE:
return caps->set_ctcss_tone;
case RIG_FUNCTION_GET_CTCSS_TONE:
return caps->get_ctcss_tone;
case RIG_FUNCTION_SET_DCS_SQL:
return caps->set_dcs_sql;
case RIG_FUNCTION_GET_DCS_SQL:
return caps->get_dcs_sql;
case RIG_FUNCTION_SET_TONE_SQL:
return caps->set_tone_sql;
case RIG_FUNCTION_GET_TONE_SQL:
return caps->get_tone_sql;
case RIG_FUNCTION_SET_CTCSS_SQL:
return caps->set_ctcss_sql;
case RIG_FUNCTION_GET_CTCSS_SQL:
return caps->get_ctcss_sql;
case RIG_FUNCTION_POWER2MW:
return caps->power2mW;
case RIG_FUNCTION_MW2POWER:
return caps->mW2power;
case RIG_FUNCTION_SET_POWERSTAT:
return caps->set_powerstat;
case RIG_FUNCTION_GET_POWERSTAT:
return caps->get_powerstat;
case RIG_FUNCTION_RESET:
return caps->reset;
case RIG_FUNCTION_SET_ANT:
return caps->set_ant;
case RIG_FUNCTION_GET_ANT:
return caps->get_ant;
case RIG_FUNCTION_SET_LEVEL:
return caps->set_level;
case RIG_FUNCTION_GET_LEVEL:
return caps->get_level;
case RIG_FUNCTION_SET_FUNC:
return caps->set_func;
case RIG_FUNCTION_GET_FUNC:
return caps->get_func;
case RIG_FUNCTION_SET_PARM:
return caps->set_parm;
case RIG_FUNCTION_GET_PARM:
return caps->get_parm;
case RIG_FUNCTION_SET_EXT_LEVEL:
return caps->set_ext_level;
case RIG_FUNCTION_GET_EXT_LEVEL:
return caps->get_ext_level;
case RIG_FUNCTION_SET_EXT_FUNC:
return caps->set_ext_func;
case RIG_FUNCTION_GET_EXT_FUNC:
return caps->get_ext_func;
case RIG_FUNCTION_SET_EXT_PARM:
return caps->set_ext_parm;
case RIG_FUNCTION_GET_EXT_PARM:
return caps->get_ext_parm;
case RIG_FUNCTION_SET_CONF:
return caps->set_conf;
case RIG_FUNCTION_GET_CONF:
return caps->get_conf;
case RIG_FUNCTION_GET_CONF2:
return caps->get_conf2;
case RIG_FUNCTION_SEND_DTMF:
return caps->send_dtmf;
case RIG_FUNCTION_SEND_MORSE:
return caps->send_morse;
case RIG_FUNCTION_STOP_MORSE:
return caps->stop_morse;
case RIG_FUNCTION_WAIT_MORSE:
return caps->wait_morse;
case RIG_FUNCTION_SEND_VOICE_MEM:
return caps->send_voice_mem;
case RIG_FUNCTION_SET_BANK:
return caps->set_bank;
case RIG_FUNCTION_SET_MEM:
return caps->set_mem;
case RIG_FUNCTION_GET_MEM:
return caps->get_mem;
case RIG_FUNCTION_VFO_OP:
return caps->vfo_op;
case RIG_FUNCTION_SCAN:
return caps->scan;
case RIG_FUNCTION_SET_TRN:
return caps->set_trn;
case RIG_FUNCTION_GET_TRN:
return caps->get_trn;
case RIG_FUNCTION_DECODE_EVENT:
return caps->decode_event;
case RIG_FUNCTION_SET_CHANNEL:
return caps->set_channel;
case RIG_FUNCTION_GET_CHANNEL:
return caps->get_channel;
case RIG_FUNCTION_GET_INFO:
return caps->get_info;
case RIG_FUNCTION_SET_CHAN_ALL_CB:
return caps->set_chan_all_cb;
case RIG_FUNCTION_GET_CHAN_ALL_CB:
return caps->get_chan_all_cb;
case RIG_FUNCTION_SET_MEM_ALL_CB:
return caps->set_mem_all_cb;
case RIG_FUNCTION_GET_MEM_ALL_CB:
return caps->get_mem_all_cb;
case RIG_FUNCTION_SET_VFO_OPT:
return caps->set_vfo_opt;
case RIG_FUNCTION_READ_FRAME_DIRECT:
return caps->read_frame_direct;
case RIG_FUNCTION_IS_ASYNC_FRAME:
return caps->is_async_frame;
case RIG_FUNCTION_PROCESS_ASYNC_FRAME:
return caps->process_async_frame;
default:
rig_debug(RIG_DEBUG_ERR, "Unknown function?? function=%d\n", rig_function);
}
return NULL;
}
// negative return indicates error
/**
* \brief Get integer/long instead of using rig->caps
* watch out for integer values that may be negative -- if needed must change hamlib
* \param RIG* and rig_caps_int_e
* \return the corresponding long value -- -RIG_EINVAL is the only error possible
*/
long long HAMLIB_API rig_get_caps_int(rig_model_t rig_model,
enum rig_caps_int_e rig_caps)
{
const struct rig_caps *caps = rig_get_caps(rig_model);
//rig_debug(RIG_DEBUG_TRACE, "%s: getting rig_caps=%u\n", __func__, rig_caps);
switch (rig_caps)
{
case RIG_CAPS_TARGETABLE_VFO:
return caps->targetable_vfo;
case RIG_CAPS_RIG_MODEL:
return caps->rig_model;
case RIG_CAPS_PTT_TYPE:
//rig_debug(RIG_DEBUG_TRACE, "%s: return %u\n", __func__, caps->ptt_type);
return caps->ptt_type;
case RIG_CAPS_PORT_TYPE:
return caps->port_type;
case RIG_CAPS_HAS_GET_LEVEL:
return caps->has_get_level;
default:
//rig_debug(RIG_DEBUG_ERR, "%s: Unknown rig_caps value=%lld\n", __func__, rig_caps);
return (-RIG_EINVAL);
}
}
const char *HAMLIB_API rig_get_caps_cptr(rig_model_t rig_model,
enum rig_caps_cptr_e rig_caps)
{
const struct rig_caps *caps = rig_get_caps(rig_model);
switch (rig_caps)
{
case RIG_CAPS_VERSION_CPTR:
return caps->version;
case RIG_CAPS_MFG_NAME_CPTR:
return caps->mfg_name;
case RIG_CAPS_MODEL_NAME_CPTR:
return caps->model_name;
case RIG_CAPS_STATUS_CPTR:
return rig_strstatus(caps->status);
default:
rig_debug(RIG_DEBUG_ERR, "%s: Unknown requested rig_caps value=%d\n", __func__,
rig_caps);
return "Unknown caps value";
}
}
void errmsg(int err, char *s, const char *func, const char *file, int line)
{
rig_debug(RIG_DEBUG_ERR, "%s(%s:%d): %s: %s\b", __func__, file, line, s,
rigerror(err));
}
uint32_t CRC32_function(uint8_t *buf, uint32_t len)
{
uint32_t crc;
uint8_t i;
crc = 0xFFFFFFFF;
while (len--)
{
uint32_t val;
val = (crc^*buf++) & 0xFF;
for (i = 0; i < 8; i++)
{
val = val & 1 ? (val >> 1) ^ 0xEDB88320 : val >> 1;
}
crc = val ^ crc >> 8;
}
return crc ^ 0xFFFFFFFF;
}
#if defined(_WIN32)
// gmtime_r can be defined by mingw
#ifndef gmtime_r
static struct tm *gmtime_r(const time_t *t, struct tm *r)
{
// gmtime is threadsafe in windows because it uses TLS
struct tm *theTm = gmtime(t);
if (theTm)
{
*r = *theTm;
return r;
}
else
{
return 0;
}
}
#endif // gmtime_r
#endif // _WIN32
//! @cond Doxygen_Suppress
char *date_strget(char *buf, int buflen, int localtime)
{
char tmpbuf[64];
struct tm *mytm;
time_t t;
struct timeval tv;
struct tm result;
int mytimezone;
t = time(NULL);
if (localtime)
{
mytm = localtime_r(&t, &result);
mytimezone = timezone;
}
else
{
mytm = gmtime_r(&t, &result);
mytimezone = 0;
}
strftime(buf, buflen, "%Y-%m-%dT%H:%M:%S.", mytm);
gettimeofday(&tv, NULL);
SNPRINTF(tmpbuf, sizeof(tmpbuf), "%06ld", (long)tv.tv_usec);
strcat(buf, tmpbuf);
SNPRINTF(tmpbuf, sizeof(tmpbuf), "%s%04d", mytimezone >= 0 ? "-" : "+",
((int)abs(mytimezone) / 3600) * 100);
strcat(buf, tmpbuf);
return buf;
}
const char *spaces()
{
static char *s = " ";
return s;
}
//! @endcond
/** @} */