Hamlib/rigs/kit/dds60.c

411 wiersze
9.3 KiB
C

/*
* Hamlib KIT backend - DDS-60 description
* Copyright (c) 2007 by Stephane Fillod
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <hamlib/config.h>
#include <stdlib.h>
#include <stdio.h>
#include "hamlib/rig.h"
#include "kit.h"
#include "parallel.h"
#include "token.h"
#define DDS60_MODES (RIG_MODE_AM)
#define DDS60_FUNC (RIG_FUNC_NONE)
#define DDS60_LEVEL_ALL (RIG_LEVEL_NONE)
#define DDS60_PARM_ALL (RIG_PARM_NONE)
#define DDS60_VFO (RIG_VFO_A)
/* defaults */
#define OSCFREQ MHz(30)
#define IFMIXFREQ kHz(0)
#define PHASE_INCR 11.25
struct dds60_priv_data
{
freq_t osc_freq;
freq_t if_mix_freq;
int multiplier;
unsigned phase_step; /* as 11.25 deg steps */
};
#define TOK_OSCFREQ TOKEN_BACKEND(1)
#define TOK_IFMIXFREQ TOKEN_BACKEND(2)
#define TOK_MULTIPLIER TOKEN_BACKEND(3)
#define TOK_PHASE_MOD TOKEN_BACKEND(4)
static const struct confparams dds60_cfg_params[] =
{
{
TOK_OSCFREQ, "osc_freq", "Oscillator freq", "Oscillator frequency in Hz",
"30000000", RIG_CONF_NUMERIC, { .n = { 0, MHz(180), 1 } }
},
{
TOK_IFMIXFREQ, "if_mix_freq", "IF", "IF mixing frequency in Hz",
"0", RIG_CONF_NUMERIC, { .n = { 0, MHz(180), 1 } }
},
{
TOK_MULTIPLIER, "multiplier", "Multiplier", "Optional X6 multiplier",
"1", RIG_CONF_CHECKBUTTON
},
{
TOK_IFMIXFREQ, "phase_mod", "Phase Modulation", "Phase modulation in degrees",
"0", RIG_CONF_NUMERIC, { .n = { 0, 360, PHASE_INCR } }
},
{ RIG_CONF_END, NULL, }
};
static int dds60_init(RIG *rig);
static int dds60_cleanup(RIG *rig);
static int dds60_open(RIG *rig);
static int dds60_set_freq(RIG *rig, vfo_t vfo, freq_t freq);
static int dds60_set_conf(RIG *rig, token_t token, const char *val);
static int dds60_get_conf(RIG *rig, token_t token, char *val);
/*
* The DDS-60 kit exists with a AD9851 chip (60 MHz),
* as well as with the AD9850 chip (30 MHz) (no multiplier).
* There is an option to enable/disable the AD9851 X6 multiplier.
* http://www.amqrp.org/kits/dds60/
* http://www.analog.com/en/prod/0,2877,AD9851,00.html
*
* The receiver is controlled via the parallel port (D0,D1,D2).
*/
const struct rig_caps dds60_caps =
{
RIG_MODEL(RIG_MODEL_DDS60),
.model_name = "DDS-60",
.mfg_name = "AmQRP",
.version = "20200112.0",
.copyright = "LGPL",
.status = RIG_STATUS_BETA,
.rig_type = RIG_TYPE_TUNER,
.ptt_type = RIG_PTT_NONE,
.dcd_type = RIG_DCD_NONE,
.port_type = RIG_PORT_PARALLEL,
.write_delay = 0,
.post_write_delay = 0,
.timeout = 200,
.retry = 0,
.has_get_func = DDS60_FUNC,
.has_set_func = DDS60_FUNC,
.has_get_level = DDS60_LEVEL_ALL,
.has_set_level = RIG_LEVEL_SET(DDS60_LEVEL_ALL),
.has_get_parm = DDS60_PARM_ALL,
.has_set_parm = RIG_PARM_SET(DDS60_PARM_ALL),
.level_gran = {},
.parm_gran = {},
.ctcss_list = NULL,
.dcs_list = NULL,
.preamp = { RIG_DBLST_END },
.attenuator = { RIG_DBLST_END },
.max_rit = Hz(0),
.max_xit = Hz(0),
.max_ifshift = Hz(0),
.targetable_vfo = 0,
.transceive = RIG_TRN_OFF,
.bank_qty = 0,
.chan_desc_sz = 0,
.chan_list = { RIG_CHAN_END },
.rx_range_list1 = {
{MHz(1), MHz(60), DDS60_MODES, -1, -1, DDS60_VFO}, /* TBC */
RIG_FRNG_END,
},
.tx_range_list1 = { RIG_FRNG_END, },
.rx_range_list2 = {
{MHz(1), MHz(60), DDS60_MODES, -1, -1, DDS60_VFO},
RIG_FRNG_END,
},
.tx_range_list2 = { RIG_FRNG_END, },
.tuning_steps = {
{DDS60_MODES, 1},
RIG_TS_END,
},
/* mode/filter list, remember: order matters! */
.filters = {
{DDS60_MODES, kHz(12)},
RIG_FLT_END,
},
.cfgparams = dds60_cfg_params,
.rig_init = dds60_init,
.rig_cleanup = dds60_cleanup,
.rig_open = dds60_open,
.set_conf = dds60_set_conf,
.get_conf = dds60_get_conf,
.set_freq = dds60_set_freq,
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};
int dds60_init(RIG *rig)
{
struct dds60_priv_data *priv;
rig->state.priv = (struct dds60_priv_data *)malloc(sizeof(
struct dds60_priv_data));
if (!rig->state.priv)
{
/* whoops! memory shortage! */
return -RIG_ENOMEM;
}
priv = rig->state.priv;
priv->osc_freq = OSCFREQ;
priv->if_mix_freq = IFMIXFREQ;
priv->multiplier = 1;
priv->phase_step = 0;
return RIG_OK;
}
int dds60_cleanup(RIG *rig)
{
if (!rig)
{
return -RIG_EINVAL;
}
if (rig->state.priv)
{
free(rig->state.priv);
}
rig->state.priv = NULL;
return RIG_OK;
}
/*
* Assumes rig!=NULL, rig->state.priv!=NULL
*/
int dds60_set_conf(RIG *rig, token_t token, const char *val)
{
struct dds60_priv_data *priv;
float phase;
priv = (struct dds60_priv_data *)rig->state.priv;
switch (token)
{
case TOK_OSCFREQ:
sscanf(val, "%"SCNfreq, &priv->osc_freq);
break;
case TOK_IFMIXFREQ:
sscanf(val, "%"SCNfreq, &priv->if_mix_freq);
break;
case TOK_MULTIPLIER:
sscanf(val, "%d", &priv->multiplier);
break;
case TOK_PHASE_MOD:
sscanf(val, "%f", &phase);
priv->phase_step = ((unsigned)((phase + PHASE_INCR / 2) / PHASE_INCR)) % 32;
break;
default:
return -RIG_EINVAL;
}
return RIG_OK;
}
/*
* assumes rig!=NULL,
* Assumes rig!=NULL, rig->state.priv!=NULL
* and val points to a buffer big enough to hold the conf value.
*/
int dds60_get_conf2(RIG *rig, token_t token, char *val, int val_len)
{
struct dds60_priv_data *priv;
priv = (struct dds60_priv_data *)rig->state.priv;
switch (token)
{
case TOK_OSCFREQ:
SNPRINTF(val, val_len, "%"PRIfreq, priv->osc_freq);
break;
case TOK_IFMIXFREQ:
SNPRINTF(val, val_len, "%"PRIfreq, priv->if_mix_freq);
break;
case TOK_MULTIPLIER:
SNPRINTF(val, val_len, "%d", priv->multiplier);
break;
case TOK_PHASE_MOD:
SNPRINTF(val, val_len, "%f", priv->phase_step * PHASE_INCR);
break;
default:
return -RIG_EINVAL;
}
return RIG_OK;
}
int dds60_get_conf(RIG *rig, token_t token, char *val)
{
return dds60_get_conf2(rig, token, val, 128);
}
#define DATA 0x01 /* d0 */
#define CLOCK 0x02 /* d1 */
#define LOAD 0x03 /* d2 */
static void ad_delay(int delay)
{
/* none needed, I/O bus should be slow enough */
}
static void ad_bit(hamlib_port_t *port, unsigned char bit)
{
bit &= DATA;
par_write_data(port, bit);
ad_delay(1);
par_write_data(port, bit | CLOCK);
ad_delay(1);
par_write_data(port, bit);
ad_delay(1);
}
static void ad_write(hamlib_port_t *port, unsigned long word,
unsigned char control)
{
int i;
/* lock the parallel port */
par_lock(port);
/* shift out the least significant 32 bits of the word */
for (i = 0; i < 32; i++)
{
ad_bit(port, word & DATA);
word >>= 1;
}
/* write out the control byte */
for (i = 0; i < 8; i++)
{
ad_bit(port, control & DATA);
control >>= 1;
}
/* load the register */
par_write_data(port, LOAD);
ad_delay(1);
par_write_data(port, 0);
/* unlock the parallel port */
par_unlock(port);
}
int dds60_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
unsigned long frg;
unsigned char control;
struct dds60_priv_data *priv;
hamlib_port_t *port = &rig->state.rigport;
freq_t osc_ref;
priv = (struct dds60_priv_data *)rig->state.priv;
if (priv->multiplier)
{
osc_ref = priv->osc_freq * 6;
}
else
{
osc_ref = priv->osc_freq;
}
/* all frequencies are in Hz */
frg = (unsigned long)(((double)freq + priv->if_mix_freq) /
osc_ref * 4294967296.0 + 0.5);
rig_debug(RIG_DEBUG_VERBOSE, "%s: word %lu, X6 multiplier %d, phase %.2f\n",
__func__, frg, priv->multiplier, priv->phase_step * PHASE_INCR);
control = priv->multiplier ? 0x01 : 0x00;
control |= (priv->phase_step & 0x1f) << 3;
ad_write(port, frg, control);
return RIG_OK;
}
int dds60_open(RIG *rig)
{
hamlib_port_t *port = &rig->state.rigport;
/* lock the parallel port */
par_lock(port);
/* Serial load enable sequence W_CLK */
par_write_data(port, 0);
ad_delay(1);
par_write_data(port, CLOCK);
ad_delay(1);
par_write_data(port, 0);
ad_delay(1);
/* Serial load enable sequence FQ_UD */
par_write_data(port, LOAD);
ad_delay(1);
par_write_data(port, 0);
/* unlock the parallel port */
par_unlock(port);
return RIG_OK;
}