Revert INSTALL to prior Hamlib version

Hamlib-3.0
Nate Bargmann 2013-09-09 21:46:53 -05:00
rodzic 60019c9444
commit 6fc7bedb6e
1 zmienionych plików z 243 dodań i 311 usunięć

554
INSTALL
Wyświetl plik

@ -1,201 +1,220 @@
Installation Instructions
*************************
Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.
Basic Installation
==================
Briefly, the shell commands `./configure; make; make install' should
configure, build, and install this package. The following
more-detailed instructions are generic; see the `README' file for
instructions specific to this package. Some packages provide this
`INSTALL' file but do not implement all of the features documented
below. The lack of an optional feature in a given package is not
necessarily a bug. More recommendations for GNU packages can be found
in *note Makefile Conventions: (standards)Makefile Conventions.
For more information specific to Hamlib, please read the README as well as
README.betatester and the first part of README.developer to see which
additional development packages are needed. This source code distribution is
autoconfiguring and you should be able to compile it and install it without
manual interventions such as editing Makefiles, configuration files, and so
on. These are generic instructions for people who are not familiar with
installing autoconfiguring software (along with some Hamlib-specific
information).
The simplest way to compile this package is to enter the source code
main directory and do the following:
1. Configure the source code by typing:
$ ./configure
If you are planning to install the package into your home directory
or to a location other than `/usr/local' then add the flag
`--prefix=PATH' to `configure'. For example, if your home directory
is `/home/username' and you would like to install it to a directory
named 'local' you can configure the package to install itself
there by invoking:
$ ./configure --prefix=$HOME/local
The configure script has several options to configure Hamlib. See the
Optional Features section below.
While running, `configure' prints some messages telling you which
features it is checking for.
2. Compile the package by typing:
$ make
Running `make' takes a while. Since Hamlib is a package, now is the
time to go get a cup of coffee.
3. Some packages are bundled with self-tests for source-code verification.
If this package includes such tests, you can optionally run them after
compilation by typing
$ make check
4. Type `make install' to install the programs and any data files and
documentation. Type `make uninstall' to undo the installation.
N.B. Be aware that Super User (root) privileges will be required to
install to /usr/local or any other system location outside of your home
directory. Many distributions include the `sudo' command which will
permit you to install Hamlib after entering your password. Otherwise
you will need to log in as 'root'.
During installation, the following files go to the following directories:
Executables -> /prefix/bin
Libraries -> /prefix/lib
Public header files -> /prefix/include
Man pages -> /prefix/man/man?
Info files -> /prefix/info
Doc files -> /prefix/share/doc/<prog name>
Share files -> /prefix/share/<prog name>
where `prefix' is either `/usr/local' or the PATH that you specified
in the `--prefix' flag.
If any of these directories do not presently exist, they will be
created on demand.
If you are installing in your home directory make sure that
`/home/username/bin' is in your path. If you're using the bash shell
add these lines at the end of your .bashrc file:
PATH="/home/username/bin:${PATH}"
export PATH
If you are using csh or tcsh, then use this line instead:
setenv PATH /home/username/bin:${PATH}
By prepending your home directory to the rest of the PATH you can
override systemwide installed software with your own custom installation.
5. After installation you may need to update the ld.so.cache as the
installation files are placed in /usr/local/lib by default. On most
systems this is easily accomplished by running the `ldconfig' command
as the superuser (root). The following line may need to be added to
/etc/ld.so.conf:
/usr/local/lib
Most modern distributions have an /etc/ld.so.conf.d/ directory where
local configuration can be made. Later versions of Debian and
derivatives have a file named 'libc.conf' in this directory. The
contents of libc.conf are:
# libc default configuration
/usr/local/lib
If your system does not have such a file, one will need to be created
and then `ldconfig' will need to be run as the root user so that
applications using the Hamlib libraries can find them.
Now `ldconfig' can be run.
While the programs built along with Hamlib will probably work fine
without running `ldconfig', experience has shown that precompiled
binaries like Fldigi will not be able to find a locally compiled
libhamlib.so.2 without updating the ld.so.cache.
6. You can remove the program binaries and object files from the
source code directory by typing `make clean'. To also remove the
files that `configure' created (so you can compile the package for
a different kind of computer), type `make distclean'. The
`configure' program will need to be run again to recompile Hamlib.
7. You can optionally generate the Doxygen documentation files:
cd doc
make doc
The HTML output files are provided for binary releases on the hamlib.org
web site.
8. Finally, if you wish to remove Hamlib, run `make uninstall' as
superuser (root), unless Hamlib was installed into your home directory,
from the Hamlib source directory. This will work unless `make distclean'
has been run.
Compiler configuration (Advanced usage)
=======================================
The `configure' shell script is responsible for choosing and configuring
the compiler(s).
The following options allow you to specify whether you
want to enable or disable various debugging mechanisms:
`--enable-warnings'
Make the compilers very picky about warnings. Try this whenever you
write new code since it may catch a few bugs. This is not active by
default because all too often warnings can be too picky and scare
the end-user.
All programs are compiled with optimization level 2 by default (-O2).
Occasionally that confuses the debugger when code is inlined. To disable
optimization and enable debugging, set the shell environment variables
CFLAGS, CXXFLAGS. On the bash shell, you can do this
like this:
$ export CFLAGS="-g"
$ export CXXFLAGS="-g"
On the tcsh shell, use the `setenv' command instead:
% setenv CFLAGS "-g"
...etc...
For other shells, please consult your shell's documentation.
Similarly, you can increase the optimization level by assigning these
variables to "-g -O3".
Depending on what languages the package uses, some of these options may
or may not be available. To see what is available, type:
% sh ./configure --help
About the configure script
==========================
The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, and a
file `config.log' containing compiler output (useful mainly for
debugging `configure').
It can also use an optional file (typically called `config.cache'
and enabled with `--cache-file=config.cache' or simply `-C') that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.
you can run in the future to recreate the current configuration, a file
`config.cache' that saves the results of its tests to speed up
reconfiguring, and a file `config.log' containing compiler output
(useful mainly for debugging `configure').
If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If you are using the cache, and at
some point `config.cache' contains results you don't want to keep, you
may remove or edit it.
be considered for the next release. If at some point `config.cache'
contains results you don't want to keep, you may remove or edit it.
The file `configure.ac' (or `configure.in') is used to create
`configure' by a program called `autoconf'. You need `configure.ac' if
you want to change it or regenerate `configure' using a newer version
of `autoconf'.
The file `configure.ac' is used to create `configure' by a program
called `autoreconf'. You only need `configure.ac' if you want to change
it or regenerate `configure' using a newer version of `autoconf'. This
project uses a custom `autogen.sh' for running autoreconf in a developer's
checkout of Hamlib from a source repository.
The simplest way to compile this package is:
Advanced installation options.
==============================
1. `cd' to the directory containing the package's source code and type
`./configure' to configure the package for your system.
Running `configure' might take a while. While running, it prints
some messages telling which features it is checking for.
2. Type `make' to compile the package.
3. Optionally, type `make check' to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.
4. Type `make install' to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the `make install' phase executed with root
privileges.
5. Optionally, type `make installcheck' to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior `make install' required
root privileges, verifies that the installation completed
correctly.
6. You can remove the program binaries and object files from the
source code directory by typing `make clean'. To also remove the
files that `configure' created (so you can compile the package for
a different kind of computer), type `make distclean'. There is
also a `make maintainer-clean' target, but that is intended mainly
for the package's developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.
7. Often, you can also type `make uninstall' to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.
8. Some packages, particularly those that use Automake, provide `make
distcheck', which can by used by developers to test that all other
targets like `make install' and `make uninstall' work correctly.
This target is generally not run by end users.
Compilers and Options
=====================
Some systems require unusual options for compilation or linking that
the `configure' script does not know about. Run `./configure --help'
for details on some of the pertinent environment variables.
You can give `configure' initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:
./configure CC=c99 CFLAGS=-g LIBS=-lposix
*Note Defining Variables::, for more details.
Compiling For Multiple Architectures
====================================
You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU `make'. `cd' to the
directory where you want the object files and executables to go and run
the `configure' script. `configure' automatically checks for the
source code in the directory that `configure' is in and in `..'. This
is known as a "VPATH" build.
With a non-GNU `make', it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use `make distclean' before
reconfiguring for another architecture.
On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types--known as "fat" or
"universal" binaries--by specifying multiple `-arch' options to the
compiler but only a single `-arch' option to the preprocessor. Like
this:
./configure CC="gcc -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CXX="g++ -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ -E"
This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results
using the `lipo' tool if you have problems.
Installation Names
==================
By default, `make install' installs the package's commands under
`/usr/local/bin', include files under `/usr/local/include', etc. You
can specify an installation prefix other than `/usr/local' by giving
`configure' the option `--prefix=PREFIX', where PREFIX must be an
absolute file name.
The `configure' script also understands the following more advanced
options, to handle situations for which `--prefix' alone is not sufficient.
You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option `--exec-prefix=PREFIX' to `configure', the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.
give `configure' the option `--exec-prefix=PATH', the package will use
PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.
In addition, if you use an unusual directory layout you can give
options like `--bindir=DIR' to specify different values for particular
options like `--bindir=PATH' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of `${prefix}', so that
specifying just `--prefix' will affect all of the other directory
specifications that were not explicitly provided.
The most portable way to affect installation locations is to pass the
correct locations to `configure'; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
`make install' command line to change installation locations without
having to reconfigure or recompile.
The first method involves providing an override variable for each
affected directory. For example, `make install
prefix=/alternate/directory' will choose an alternate location for all
directory configuration variables that were expressed in terms of
`${prefix}'. Any directories that were specified during `configure',
but not in terms of `${prefix}', must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.
The second method involves providing the `DESTDIR' variable. For
example, `make install DESTDIR=/alternate/directory' will prepend
`/alternate/directory' before all installation names. The approach of
`DESTDIR' overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,
it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of `${prefix}'
at `configure' time.
Optional Features
=================
you can set and what kinds of files go in them.
If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.
Optional Features
=================
Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
@ -208,158 +227,71 @@ find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.
Some packages offer the ability to configure how verbose the
execution of `make' will be. For these packages, running `./configure
--enable-silent-rules' sets the default to minimal output, which can be
overridden with `make V=1'; while running `./configure
--disable-silent-rules' sets the default to verbose, which can be
overridden with `make V=0'.
MS Windows
==========
- Debian system with mingw32msvc cross-compiler
Particular systems
==================
./configure --with-included-ltdl --host=i586-mingw32msvc
On HP-UX, the default C compiler is not ANSI C compatible. If GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:
- Mingw compiler under Cygwin
CC="gcc -mno-cygwin" CXX="g++ -mno-cygwin" \
./configure --with-included-ltdl --host=i686-pc-mingw32
./configure CC="cc -Ae -D_XOPEN_SOURCE=500"
- Cygwin
Native Cygwin requires no special options besides regular ones.
and if that doesn't work, install pre-built binaries of GCC for HP-UX.
N.B. See the 'build-win32.sh' script and its associated README.build-win32 file
in the 'scripts' directory for complete details on build a Win32 binary.
On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot
parse its `<wchar.h>' header file. The option `-nodtk' can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try
Hamlib Specific Features
========================
./configure CC="cc"
Various Hamlib features requiring the presence of third party packages are
enabled with options beginning with '--with-'. At this time these options
are:
and if that doesn't work, try
--with-xml-support build rigmem with XML support [default=no]
--without-readline disable readline in rigctl/rotctl [default=yes]
--without-cxx-binding do not build C++ binding and demo [default=yes]
--with-perl-binding build perl binding and demo [default=no]
--with-perl-inc directory containing perl includes
--with-python-binding build python binding and demo [default=no]
--with-tcl-binding build Tcl binding and demo [default=no]
--with-tcl=PATH directory containing tcl configuration (tclConfig.sh)
./configure CC="cc -nodtk"
Optional features that may require specialized hardware are:
On Solaris, don't put `/usr/ucb' early in your `PATH'. This
directory contains several dysfunctional programs; working variants of
these programs are available in `/usr/bin'. So, if you need `/usr/ucb'
in your `PATH', put it _after_ `/usr/bin'.
--disable-html-matrix do not generate HTML rig feature matrix (requires
libgd-dev) [default=check]
--disable-winradio do not build winradio backend [default=yes]
--enable-usrp build USRP backend [default=no]
On Haiku, software installed for all users goes in `/boot/common',
not `/usr/local'. It is recommended to use the following options:
Bindings notes
--------------
./configure --prefix=/boot/common
Should you encounter any problem with the build of the C++ binding,
you can disable this optional part by passing `--without-cxx-binding'
to the configure script (may happen under MacOSX).
Specifying the System Type
==========================
Note that the Perl, Python, and TCL bindings are disabled by default so
they will need to be specifically enabled for language binding support (this
has no effect on rigctld/rotctld). You may get a make error (which means it
will quit before compilation is complete) if the
--with-[perl|python|tcl]-binding option(s) are given and the Swig package is
not installed.
There may be some features `configure' cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
_same_ architectures, `configure' can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
`--build=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name which has the form:
Perl and Python bindings should be installed into a 'configure' runtime
discovered location under the default prefix.
CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:
OS
KERNEL-OS
See the file `config.sub' for the possible values of each field. If
`config.sub' isn't included in this package, then this package doesn't
need to know the machine type.
If you are _building_ compiler tools for cross-compiling, you should
use the option `--target=TYPE' to select the type of system they will
produce code for.
If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with `--host=TYPE'.
Sharing Defaults
================
If you want to set default values for `configure' scripts to share,
you can create a site shell script called `config.site' that gives
default values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.
Defining Variables
==================
Variables not defined in a site shell script can be set in the
environment passed to `configure'. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the `configure' command line, using `VAR=value'. For example:
./configure CC=/usr/local2/bin/gcc
causes the specified `gcc' to be used as the C compiler (unless it is
overridden in the site shell script).
Unfortunately, this technique does not work for `CONFIG_SHELL' due to
an Autoconf bug. Until the bug is fixed you can use this workaround:
CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash
`configure' Invocation
======================
`configure' recognizes the following options to control how it
operates.
`--help'
`-h'
Print a summary of all of the options to `configure', and exit.
`--help=short'
`--help=recursive'
Print a summary of the options unique to this package's
`configure', and exit. The `short' variant lists options used
only in the top level, while the `recursive' variant lists options
also present in any nested packages.
`--version'
`-V'
Print the version of Autoconf used to generate the `configure'
script, and exit.
`--cache-file=FILE'
Enable the cache: use and save the results of the tests in FILE,
traditionally `config.cache'. FILE defaults to `/dev/null' to
disable caching.
`--config-cache'
`-C'
Alias for `--cache-file=config.cache'.
`--quiet'
`--silent'
`-q'
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to `/dev/null' (any error
messages will still be shown).
`--srcdir=DIR'
Look for the package's source code in directory DIR. Usually
`configure' can determine that directory automatically.
`--prefix=DIR'
Use DIR as the installation prefix. *note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.
`--no-create'
`-n'
Run the configure checks, but stop before creating any output
files.
`configure' also accepts some other, not widely useful, options. Run
`configure --help' for more details.
The TCL binding will be installed into $(libdir)/tcl/Hamlib (default). If a
non-default --prefix is passed to 'configure', the 'lappend' line in tcltest.tcl
script will need to be modified accordingly so the script can load the Hamlib
package. As TCL doesn't seem to have a "standard" location for additional
packages and since there seemed to be no common location among distributions,
this path was chosen abitrarily. Any patches to improve installation path
discovery of local packages are welcome.
When running 'make uninstall' the installed files for the Python and TCL
modules are removed. The Perl files will remain due to a design decision
of the Perl MakeMaker module. Installed Perl binding files will need to be
removed manually.