Start to implement FFT.

merge-requests/1/head
Teuniz 2016-01-04 14:20:26 +01:00
rodzic 438864372c
commit e81d22bc40
15 zmienionych plików z 1628 dodań i 85 usunięć

Wyświetl plik

@ -54,6 +54,10 @@ HEADERS += signalcurve.h
HEADERS += settings_dialog.h
HEADERS += screen_thread.h
HEADERS += third_party/kiss_fft/kiss_fft.h
HEADERS += third_party/kiss_fft/_kiss_fft_guts.h
HEADERS += third_party/kiss_fft/kiss_fftr.h
SOURCES += main.cpp
SOURCES += mainwindow.cpp
SOURCES += mainwindow_constr.cpp
@ -71,6 +75,9 @@ SOURCES += signalcurve.cpp
SOURCES += settings_dialog.cpp
SOURCES += screen_thread.cpp
SOURCES += third_party/kiss_fft/kiss_fft.c
SOURCES += third_party/kiss_fft/kiss_fftr.c
RESOURCES = images.qrc
target.path = /usr/bin

Wyświetl plik

@ -31,9 +31,11 @@
#include <QMutex>
#include "third_party/kiss_fft/kiss_fftr.h"
#define PROGRAM_NAME "DSRemote"
#define PROGRAM_VERSION "0.31_1601021654"
#define PROGRAM_VERSION "0.31_1601041416"
#define MAX_PATHLEN 4096
@ -46,6 +48,8 @@
#define WAVFRM_MAX_BUFSZ (1024 * 1024 * 2)
#define FFT_MAX_BUFSZ 4096
#define ADJ_DIAL_FUNC_NONE 0
#define ADJ_DIAL_FUNC_HOLDOFF 1
#define ADJ_DIAL_FUNC_ACQ_AVG 2
@ -181,6 +185,17 @@ struct device_settings
int cmd_cue_idx_in;
int cmd_cue_idx_out;
int math_fft_src; // 0=ch1, 1=ch2, 2=ch3, 3=ch4
int math_fft; // 0=off, 1=on
int math_fft_split; // 0=off, 1=on
int math_fft_unit; // 0=VRMS, 1=DB
double *fftbuf_in;
double *fftbuf_out;
int fftbufsz;
kiss_fftr_cfg k_cfg;
kiss_fft_cpx *kiss_fftbuf;
double fft_v_sense;
};

Wyświetl plik

@ -2169,6 +2169,90 @@ void UI_Mainwindow::chan_menu()
}
void UI_Mainwindow::math_menu()
{
QMenu menu,
submenufft;
QList<QAction *> actionList;
if((devparms.activechannel < 0) || (devparms.activechannel > MAX_CHNS))
{
return;
}
submenufft.setTitle("FFT");
submenufft.addAction("On", this, SLOT(toggle_fft()));
submenufft.addAction("Off", this, SLOT(toggle_fft()));
submenufft.addAction("Full", this, SLOT(toggle_fft_split()));
submenufft.addAction("Half", this, SLOT(toggle_fft_split()));
submenufft.addAction("Vrms", this, SLOT(toggle_fft_unit()));
submenufft.addAction("dBV", this, SLOT(toggle_fft_unit()));
submenufft.addAction("CH1", this, SLOT(select_fft_ch1()));
submenufft.addAction("CH2", this, SLOT(select_fft_ch2()));
if(devparms.channel_cnt > 2)
{
submenufft.addAction("CH3", this, SLOT(select_fft_ch3()));
submenufft.addAction("CH4", this, SLOT(select_fft_ch4()));
}
actionList = submenufft.actions();
if(devparms.math_fft == 1)
{
actionList[0]->setCheckable(true);
actionList[0]->setChecked(true);
}
else
{
actionList[1]->setCheckable(true);
actionList[1]->setChecked(true);
}
if(devparms.math_fft_split == 0)
{
actionList[2]->setCheckable(true);
actionList[2]->setChecked(true);
}
else
{
actionList[3]->setCheckable(true);
actionList[3]->setChecked(true);
}
if(devparms.math_fft_unit == 0)
{
actionList[4]->setCheckable(true);
actionList[4]->setChecked(true);
}
else
{
actionList[5]->setCheckable(true);
actionList[5]->setChecked(true);
}
if(devparms.math_fft_src == 0)
{
actionList[6]->setCheckable(true);
actionList[6]->setChecked(true);
}
else if(devparms.math_fft_src == 1)
{
actionList[7]->setCheckable(true);
actionList[7]->setChecked(true);
}
else if(devparms.math_fft_src == 2)
{
actionList[8]->setCheckable(true);
actionList[8]->setChecked(true);
}
else if(devparms.math_fft_src == 3)
{
actionList[9]->setCheckable(true);
actionList[9]->setChecked(true);
}
menu.addMenu(&submenufft);
menu.exec(mathMenuButton->mapToGlobal(QPoint(0,0)));
}
void UI_Mainwindow::chan_coupling_ac()
{
char str[128];
@ -2982,6 +3066,101 @@ void UI_Mainwindow::trigAdjustDialClicked(QPoint)
}
void UI_Mainwindow::toggle_fft()
{
if(devparms.math_fft == 1)
{
devparms.math_fft = 0;
set_cue_cmd(":MATH:DISP OFF");
statusLabel->setText("Math display off");
}
else
{
set_cue_cmd(":MATH:OPER FFT");
set_cue_cmd(":MATH:DISP ON");
devparms.math_fft = 1;
statusLabel->setText("FFT on");
}
}
void UI_Mainwindow::toggle_fft_split()
{
if(devparms.math_fft_split == 1)
{
devparms.math_fft_split = 0;
set_cue_cmd(":MATH:FFT:SPL OFF");
statusLabel->setText("FFT full");
}
else
{
set_cue_cmd(":MATH:FFT:SPL ON");
devparms.math_fft_split = 1;
statusLabel->setText("FFT half");
}
}
void UI_Mainwindow::toggle_fft_unit()
{
if(devparms.math_fft_unit == 1)
{
devparms.math_fft_unit = 0;
set_cue_cmd(":MATH:FFT:UNIT VRMS");
statusLabel->setText("FFT unit Vrms");
}
else
{
set_cue_cmd(":MATH:FFT:UNIT DB");
devparms.math_fft_unit = 1;
statusLabel->setText("FFT unit dBV");
}
}
void UI_Mainwindow::select_fft_ch1()
{
devparms.math_fft_src = 0;
statusLabel->setText("FFT CH1");
}
void UI_Mainwindow::select_fft_ch2()
{
devparms.math_fft_src = 1;
statusLabel->setText("FFT CH2");
}
void UI_Mainwindow::select_fft_ch3()
{
devparms.math_fft_src = 2;
statusLabel->setText("FFT CH3");
}
void UI_Mainwindow::select_fft_ch4()
{
devparms.math_fft_src = 3;
statusLabel->setText("FFT CH4");
}

Wyświetl plik

@ -291,6 +291,14 @@ void UI_Mainwindow::open_connection()
devparms.cmd_cue_idx_in = 0;
devparms.cmd_cue_idx_out = 0;
devparms.fftbufsz = devparms.hordivisions * 50;
if(devparms.k_cfg != NULL)
{
free(devparms.k_cfg);
}
devparms.k_cfg = kiss_fftr_alloc(devparms.fftbufsz * 2, 0, NULL, NULL);
connect(adjDial, SIGNAL(valueChanged(int)), this, SLOT(adjDialChanged(int)));
connect(trigAdjustDial, SIGNAL(valueChanged(int)), this, SLOT(trigAdjustDialChanged(int)));
connect(horScaleDial, SIGNAL(valueChanged(int)), this, SLOT(horScaleDialChanged(int)));
@ -304,6 +312,7 @@ void UI_Mainwindow::open_connection()
connect(ch3Button, SIGNAL(clicked()), this, SLOT(ch3ButtonClicked()));
connect(ch4Button, SIGNAL(clicked()), this, SLOT(ch4ButtonClicked()));
connect(chanMenuButton, SIGNAL(clicked()), this, SLOT(chan_menu()));
connect(mathMenuButton, SIGNAL(clicked()), this, SLOT(math_menu()));
connect(waveForm, SIGNAL(chan1Clicked()), this, SLOT(ch1ButtonClicked()));
connect(waveForm, SIGNAL(chan2Clicked()), this, SLOT(ch2ButtonClicked()));
connect(waveForm, SIGNAL(chan3Clicked()), this, SLOT(ch3ButtonClicked()));
@ -414,6 +423,8 @@ void UI_Mainwindow::close_connection()
disconnect(ch2Button, SIGNAL(clicked()), this, SLOT(ch2ButtonClicked()));
disconnect(ch3Button, SIGNAL(clicked()), this, SLOT(ch3ButtonClicked()));
disconnect(ch4Button, SIGNAL(clicked()), this, SLOT(ch4ButtonClicked()));
disconnect(chanMenuButton, SIGNAL(clicked()), this, SLOT(chan_menu()));
disconnect(mathMenuButton, SIGNAL(clicked()), this, SLOT(math_menu()));
disconnect(waveForm, SIGNAL(chan1Clicked()), this, SLOT(ch1ButtonClicked()));
disconnect(waveForm, SIGNAL(chan2Clicked()), this, SLOT(ch2ButtonClicked()));
disconnect(waveForm, SIGNAL(chan3Clicked()), this, SLOT(ch3ButtonClicked()));
@ -450,6 +461,13 @@ void UI_Mainwindow::close_connection()
device = NULL;
if(devparms.k_cfg != NULL)
{
free(devparms.k_cfg);
devparms.k_cfg = NULL;
}
statusLabel->setText("Disconnected");
}
@ -1643,6 +1661,68 @@ int UI_Mainwindow::get_device_settings()
goto OUT_ERROR;
}
usleep(TMC_GDS_DELAY);
if(tmc_write(":MATH:FFT:SPL?") != 14)
{
line = __LINE__;
goto OUT_ERROR;
}
if(tmc_read() < 1)
{
line = __LINE__;
goto OUT_ERROR;
}
devparms.math_fft_split = atoi(device->buf);
usleep(TMC_GDS_DELAY);
if(tmc_write(":MATH:OPER?") != 11)
{
line = __LINE__;
goto OUT_ERROR;
}
if(tmc_read() < 1)
{
line = __LINE__;
goto OUT_ERROR;
}
if(!strcmp(device->buf, "FFT"))
{
devparms.math_fft = 1;
}
else
{
devparms.math_fft = 0;
}
usleep(TMC_GDS_DELAY);
if(tmc_write(":MATH:FFT:UNIT?") != 15)
{
line = __LINE__;
goto OUT_ERROR;
}
if(tmc_read() < 1)
{
line = __LINE__;
goto OUT_ERROR;
}
if(!strcmp(device->buf, "VRMS"))
{
devparms.math_fft_unit = 0;
}
else
{
devparms.math_fft_unit = 1;
}
QApplication::restoreOverrideCursor();
return 0;
@ -3010,7 +3090,7 @@ void UI_Mainwindow::screenUpdate()
if(devparms.triggerstatus != 1) // Don't plot waveform data when triggerstatus is "wait"
{
waveForm->drawCurve(&devparms, device, devparms.wavebufsz);
waveForm->drawCurve(&devparms, device);
}
else
{

Wyświetl plik

@ -84,6 +84,7 @@
#include "settings_dialog.h"
#include "screen_thread.h"
#include "third_party/kiss_fft/kiss_fftr.h"
class SignalCurve;
@ -184,7 +185,8 @@ private:
*playpauseButton,
*stopButton,
*recordButton,
*measureButton;
*measureButton,
*mathMenuButton;
QDial *adjDial,
*horScaleDial,
@ -339,6 +341,7 @@ private slots:
void chan_invert_off();
void chan_menu();
void math_menu();
void set_acq_normal();
void set_acq_average();
@ -386,6 +389,14 @@ private slots:
void set_to_factory();
void toggle_fft();
void toggle_fft_split();
void toggle_fft_unit();
void select_fft_ch1();
void select_fft_ch2();
void select_fft_ch3();
void select_fft_ch4();
protected:
void closeEvent(QCloseEvent *);

Wyświetl plik

@ -62,15 +62,25 @@ UI_Mainwindow::UI_Mainwindow()
memset(&devparms, 0, sizeof(struct device_settings));
devparms.screenshot_buf = (char *)malloc(1024 * 1024 * 2);
devparms.screenshot_buf = (char *)malloc(WAVFRM_MAX_BUFSZ);
for(i=0; i<MAX_CHNS; i++)
{
devparms.wavebuf[i] = (short *)malloc(WAVFRM_MAX_BUFSZ);
devparms.wavebuf[i] = (short *)malloc(WAVFRM_MAX_BUFSZ * sizeof(short));
devparms.chanscale[i] = 1;
}
devparms.fftbuf_in = (double *)malloc(FFT_MAX_BUFSZ * sizeof(double));
devparms.fftbuf_out = (double *)malloc(FFT_MAX_BUFSZ * sizeof(double));
devparms.kiss_fftbuf = (kiss_fft_cpx *)malloc(FFT_MAX_BUFSZ * sizeof(kiss_fft_cpx));
devparms.k_cfg = NULL;
devparms.fft_v_sense = 1.0;
devparms.screentimerival = settings.value("gui/refresh", 50).toInt();
if((devparms.screentimerival < 50) || (devparms.screentimerival > 2000))
@ -300,12 +310,15 @@ UI_Mainwindow::UI_Mainwindow()
vertOffsetDial->setMaximum(100);
vertOffsetDial->setMinimum(0);
vertOffsetDial->setContextMenuPolicy(Qt::CustomContextMenu);
mathMenuButton = new QPushButton(verticalGrpBox);
mathMenuButton->setGeometry(75, 110, 40, 18);
mathMenuButton->setText("Math");
vertScaleLabel = new QLabel(verticalGrpBox);
vertScaleLabel->setGeometry(80, 103, 40, 18);
vertScaleLabel->setGeometry(80, 143, 40, 18);
vertScaleLabel->setStyleSheet("font: 7pt;");
vertScaleLabel->setText("Scale");
vertScaleDial = new QDial(verticalGrpBox);
vertScaleDial->setGeometry(70, 120, 50, 50);
vertScaleDial->setGeometry(70, 160, 50, 50);
vertScaleDial->setWrapping(true);
vertScaleDial->setNotchesVisible(true);
vertScaleDial->setSingleStep(1);
@ -542,6 +555,12 @@ UI_Mainwindow::~UI_Mainwindow()
{
free(devparms.wavebuf[i]);
}
free(devparms.fftbuf_in);
free(devparms.fftbuf_out);
free(devparms.kiss_fftbuf);
}

Wyświetl plik

@ -29,6 +29,9 @@
#include "screen_thread.h"
#define SPECT_LOG_MINIMUM (0.000001)
#define SPECT_LOG_MINIMUM_LOG (-5)
void screenThread::set_device(struct tmcdev *tmdev)
{
@ -80,6 +83,14 @@ void screenThread::set_params(struct device_settings *dev_parms)
params.chandisplay[3] = deviceparms->chandisplay[3];
params.countersrc = deviceparms->countersrc;
params.cmd_cue_idx_in = deviceparms->cmd_cue_idx_in;
params.math_fft_src = deviceparms->math_fft_src;
params.math_fft = deviceparms->math_fft;
params.math_fft_unit = deviceparms->math_fft_unit;
params.fftbuf_in = deviceparms->fftbuf_in;
params.fftbuf_out = deviceparms->fftbuf_out;
params.fftbufsz = deviceparms->fftbufsz;
params.k_cfg = deviceparms->k_cfg;
params.kiss_fftbuf = deviceparms->kiss_fftbuf;
params.debug_str[0] = 0;
}
@ -273,7 +284,7 @@ OUT_ERROR:
void screenThread::run()
{
int i, j, n=0, chns=0, line, cmd_sent=0;
int i, j, k, n=0, chns=0, line, cmd_sent=0;
char str[128];
@ -533,6 +544,37 @@ void screenThread::run()
{
params.wavebuf[i][j] = (int)(((unsigned char *)device->buf)[j]) - 127;
}
if((n == (params.fftbufsz * 2)) && (params.math_fft == 1) && (i == params.math_fft_src))
{
for(j=0; j<n; j++)
{
params.fftbuf_in[j] = params.wavebuf[i][j];
}
kiss_fftr(params.k_cfg, params.fftbuf_in, params.kiss_fftbuf);
for(k=0; k<params.fftbufsz; k++)
{
params.fftbuf_out[k] = (((params.kiss_fftbuf[k].r * params.kiss_fftbuf[k].r) +
(params.kiss_fftbuf[k].i * params.kiss_fftbuf[k].i)) / params.fftbufsz);
if(params.math_fft_unit) // dBV
{
if(params.fftbuf_out[k] < SPECT_LOG_MINIMUM)
{
params.fftbuf_out[k] = SPECT_LOG_MINIMUM;
}
params.fftbuf_out[k] = log10(params.fftbuf_out[k]);
if(params.fftbuf_out[k] < SPECT_LOG_MINIMUM_LOG)
{
params.fftbuf_out[k] = SPECT_LOG_MINIMUM_LOG;
}
}
}
}
}
params.wavebufsz = n;

Wyświetl plik

@ -34,6 +34,7 @@
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include <QObject>
#include <QThread>
@ -43,6 +44,8 @@
#include "connection.h"
#include "tmc_dev.h"
#include "third_party/kiss_fft/kiss_fftr.h"
class screenThread : public QThread
@ -85,6 +88,15 @@ private:
double timebasedelayoffset;
double timebasedelayscale;
int math_fft_src;
int math_fft;
int math_fft_unit;
double *fftbuf_in;
double *fftbuf_out;
int fftbufsz;
kiss_fftr_cfg k_cfg;
kiss_fft_cpx *kiss_fftbuf;
char debug_str[1024];
} params;

Wyświetl plik

@ -64,6 +64,8 @@ SignalCurve::SignalCurve(QWidget *w_parent) : QWidget(w_parent)
bordersize = 60;
v_sense = 1;
fft_v_sense = 1;
fft_v_offset = 0;
mouse_x = 0;
mouse_y = 0;
@ -144,9 +146,9 @@ void SignalCurve::paintEvent(QPaintEvent *)
void SignalCurve::drawWidget(QPainter *painter, int curve_w, int curve_h)
{
int i, chn, tmp, rot=1, small_rulers;
int i, chn, tmp, rot=1, small_rulers, curve_w_backup, curve_h_backup;
char str[256];
char str[1024];
double h_step=0.0,
step,
@ -154,6 +156,15 @@ void SignalCurve::drawWidget(QPainter *painter, int curve_w, int curve_h)
// clk_start = clock();
if(devparms == NULL)
{
return;
}
curve_w_backup = curve_w;
curve_h_backup = curve_h;
small_rulers = 5 * devparms->hordivisions;
painter->fillRect(0, 0, curve_w, curve_h, BackgroundColor);
@ -207,101 +218,110 @@ void SignalCurve::drawWidget(QPainter *painter, int curve_w, int curve_h)
/////////////////////////////////// translate coordinates, draw and fill a rectangle ///////////////////////////////////////////
painter->translate(QPoint(bordersize, bordersize));
painter->translate(bordersize, bordersize);
curve_w -= (bordersize * 2);
curve_h -= (bordersize * 2);
if(devparms->math_fft && devparms->math_fft_split)
{
curve_h /= 3;
}
/////////////////////////////////// draw the rasters ///////////////////////////////////////////
painter->setPen(RasterColor);
painter->drawRect (0, 0, curve_w - 1, curve_h - 1);
if(devparms->displaygrid)
if((devparms->math_fft == 0) || (devparms->math_fft_split == 0))
{
painter->setPen(QPen(QBrush(RasterColor, Qt::SolidPattern), tracewidth, Qt::DotLine, Qt::SquareCap, Qt::BevelJoin));
if(devparms->displaygrid == 2)
{
step = (double)curve_w / (double)devparms->hordivisions;
for(i=1; i<devparms->hordivisions; i++)
{
painter->drawLine(step * i, curve_h - 1, step * i, 0);
}
step = curve_h / 8.0;
for(i=1; i<8; i++)
{
painter->drawLine(0, step * i, curve_w - 1, step * i);
}
}
else
{
painter->drawLine(curve_w / 2, curve_h - 1, curve_w / 2, 0);
painter->drawLine(0, curve_h / 2, curve_w - 1, curve_h / 2);
}
}
painter->setPen(RasterColor);
step = (double)curve_w / (double)small_rulers;
for(i=1; i<small_rulers; i++)
{
step2 = step * i;
if(devparms->displaygrid)
{
painter->drawLine(step2, curve_h / 2 + 2, step2, curve_h / 2 - 2);
painter->setPen(QPen(QBrush(RasterColor, Qt::SolidPattern), tracewidth, Qt::DotLine, Qt::SquareCap, Qt::BevelJoin));
if(devparms->displaygrid == 2)
{
step = (double)curve_w / (double)devparms->hordivisions;
for(i=1; i<devparms->hordivisions; i++)
{
painter->drawLine(step * i, curve_h - 1, step * i, 0);
}
step = curve_h / 8.0;
for(i=1; i<8; i++)
{
painter->drawLine(0, step * i, curve_w - 1, step * i);
}
}
else
{
painter->drawLine(curve_w / 2, curve_h - 1, curve_w / 2, 0);
painter->drawLine(0, curve_h / 2, curve_w - 1, curve_h / 2);
}
}
if(i % 5)
painter->setPen(RasterColor);
step = (double)curve_w / (double)small_rulers;
for(i=1; i<small_rulers; i++)
{
painter->drawLine(step2, curve_h - 1, step2, curve_h - 5);
step2 = step * i;
painter->drawLine(step2, 0, step2, 4);
if(devparms->displaygrid)
{
painter->drawLine(step2, curve_h / 2 + 2, step2, curve_h / 2 - 2);
}
if(i % 5)
{
painter->drawLine(step2, curve_h - 1, step2, curve_h - 5);
painter->drawLine(step2, 0, step2, 4);
}
else
{
painter->drawLine(step2, curve_h - 1, step2, curve_h - 9);
painter->drawLine(step2, 0, step2, 8);
}
}
else
step = curve_h / 40.0;
for(i=1; i<40; i++)
{
painter->drawLine(step2, curve_h - 1, step2, curve_h - 9);
step2 = step * i;
painter->drawLine(step2, 0, step2, 8);
if(devparms->displaygrid)
{
painter->drawLine(curve_w / 2 + 2, step2, curve_w / 2 - 2, step2);
}
if(i % 5)
{
painter->drawLine(curve_w - 1, step2, curve_w - 5, step2);
painter->drawLine(0, step2, 4, step2);
}
else
{
painter->drawLine(curve_w - 1, step2, curve_w - 9, step2);
painter->drawLine(0, step2, 8, step2);
}
}
}
step = curve_h / 40.0;
for(i=1; i<40; i++)
} // if((devparms->math_fft == 0) || (devparms->math_fft_split == 0))
else
{
step2 = step * i;
painter->drawLine(curve_w / 2, curve_h - 1, curve_w / 2, 0);
if(devparms->displaygrid)
{
painter->drawLine(curve_w / 2 + 2, step2, curve_w / 2 - 2, step2);
}
if(i % 5)
{
painter->drawLine(curve_w - 1, step2, curve_w - 5, step2);
painter->drawLine(0, step2, 4, step2);
}
else
{
painter->drawLine(curve_w - 1, step2, curve_w - 9, step2);
painter->drawLine(0, step2, 8, step2);
}
}
if(devparms == NULL)
{
return;
painter->drawLine(0, curve_h / 2, curve_w - 1, curve_h / 2);
}
/////////////////////////////////// draw the arrows ///////////////////////////////////////////
@ -351,6 +371,80 @@ void SignalCurve::drawWidget(QPainter *painter, int curve_w, int curve_h)
}
}
/////////////////////////////////// FFT: draw the curve ///////////////////////////////////////////
if((devparms->math_fft == 1) && (devparms->math_fft_split == 0))
{
if((devparms->fftbufsz > 32) && devparms->chandisplay[devparms->math_fft_src])
{
painter->setClipping(true);
painter->setClipRegion(QRegion(0, 0, curve_w, curve_h), Qt::ReplaceClip);
h_step = (double)curve_w / (double)devparms->fftbufsz;
fft_v_sense = v_sense * 35;
fft_v_offset = curve_h * 0.75;
painter->setPen(QPen(QBrush(QColor(128, 0, 255), Qt::SolidPattern), tracewidth, Qt::SolidLine, Qt::SquareCap, Qt::BevelJoin));
for(i=0; i<devparms->fftbufsz; i++)
{
if(devparms->fftbufsz < (curve_w / 2))
{
painter->drawLine(i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset, (i + 1) * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset);
if(i)
{
painter->drawLine(i * h_step, (devparms->fftbuf_out[i - 1] * fft_v_sense) + fft_v_offset, i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset);
}
}
else
{
if(i < (devparms->fftbufsz - 1))
{
if(devparms->displaytype)
{
painter->drawPoint(i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset);
}
else
{
painter->drawLine(i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset, (i + 1) * h_step, (devparms->fftbuf_out[i + 1] * fft_v_sense) + fft_v_offset);
}
}
}
}
sprintf(str, "FFT: CH%i ", devparms->math_fft_src + 1);
if(devparms->timebasedelayenable)
{
convert_to_metric_suffix(str + strlen(str),
(devparms->fftbufsz * 2) / (devparms->timebasedelayscale * devparms->hordivisions),
0);
}
else
{
convert_to_metric_suffix(str + strlen(str),
(devparms->fftbufsz * 2) / (devparms->timebasescale * devparms->hordivisions),
0);
}
strcat(str, "Sa/s");
painter->drawText(15, curve_h - 15, str);
painter->setClipping(false);
}
else
{
painter->setPen(QPen(QBrush(QColor(128, 0, 255), Qt::SolidPattern), tracewidth, Qt::SolidLine, Qt::SquareCap, Qt::BevelJoin));
sprintf(str, "FFT: CH%i Data Invalid!", devparms->math_fft_src + 1);
painter->drawText(15, curve_h - 15, str);
}
}
/////////////////////////////////// draw the curve ///////////////////////////////////////////
if(bufsize > 32)
@ -535,6 +629,180 @@ void SignalCurve::drawWidget(QPainter *painter, int curve_w, int curve_h)
paintLabel(painter, 20, curve_h - 50, 100, 20, str, SignalColor[3]);
}
if((devparms->math_fft == 0) || (devparms->math_fft_split == 0))
{
return;
}
/////////////////////////////////// FFT: translate coordinates, draw and fill a rectangle ///////////////////////////////////////////
painter->resetTransform();
painter->translate(bordersize, bordersize + curve_h + 15);
curve_w = curve_w_backup - (bordersize * 2);
curve_h = curve_h_backup - (bordersize * 2);
curve_h *= 0.64;
/////////////////////////////////// FFT: draw the rasters ///////////////////////////////////////////
painter->setPen(RasterColor);
painter->drawRect (0, 0, curve_w - 1, curve_h - 1);
if(devparms->displaygrid)
{
painter->setPen(QPen(QBrush(RasterColor, Qt::SolidPattern), tracewidth, Qt::DotLine, Qt::SquareCap, Qt::BevelJoin));
if(devparms->displaygrid == 2)
{
step = (double)curve_w / (double)devparms->hordivisions;
for(i=1; i<devparms->hordivisions; i++)
{
painter->drawLine(step * i, curve_h - 1, step * i, 0);
}
step = curve_h / 8.0;
for(i=1; i<8; i++)
{
painter->drawLine(0, step * i, curve_w - 1, step * i);
}
}
else
{
painter->drawLine(curve_w / 2, curve_h - 1, curve_w / 2, 0);
painter->drawLine(0, curve_h / 2, curve_w - 1, curve_h / 2);
}
}
painter->setPen(RasterColor);
step = (double)curve_w / (double)small_rulers;
for(i=1; i<small_rulers; i++)
{
step2 = step * i;
if(devparms->displaygrid)
{
painter->drawLine(step2, curve_h / 2 + 2, step2, curve_h / 2 - 2);
}
if(i % 5)
{
painter->drawLine(step2, curve_h - 1, step2, curve_h - 5);
painter->drawLine(step2, 0, step2, 4);
}
else
{
painter->drawLine(step2, curve_h - 1, step2, curve_h - 9);
painter->drawLine(step2, 0, step2, 8);
}
}
step = curve_h / 40.0;
for(i=1; i<40; i++)
{
step2 = step * i;
if(devparms->displaygrid)
{
painter->drawLine(curve_w / 2 + 2, step2, curve_w / 2 - 2, step2);
}
if(i % 5)
{
painter->drawLine(curve_w - 1, step2, curve_w - 5, step2);
painter->drawLine(0, step2, 4, step2);
}
else
{
painter->drawLine(curve_w - 1, step2, curve_w - 9, step2);
painter->drawLine(0, step2, 8, step2);
}
}
/////////////////////////////////// FFT: draw the curve ///////////////////////////////////////////
if((devparms->fftbufsz > 32) && devparms->chandisplay[devparms->math_fft_src])
{
painter->setClipping(true);
painter->setClipRegion(QRegion(0, 0, curve_w, curve_h), Qt::ReplaceClip);
h_step = (double)curve_w / (double)devparms->fftbufsz;
fft_v_sense = v_sense * 35;
fft_v_offset = curve_h * 0.75;
painter->setPen(QPen(QBrush(QColor(128, 0, 255), Qt::SolidPattern), tracewidth, Qt::SolidLine, Qt::SquareCap, Qt::BevelJoin));
for(i=0; i<devparms->fftbufsz; i++)
{
if(devparms->fftbufsz < (curve_w / 2))
{
painter->drawLine(i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset, (i + 1) * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset);
if(i)
{
painter->drawLine(i * h_step, (devparms->fftbuf_out[i - 1] * fft_v_sense) + fft_v_offset, i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset);
}
}
else
{
if(i < (devparms->fftbufsz - 1))
{
if(devparms->displaytype)
{
painter->drawPoint(i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset);
}
else
{
painter->drawLine(i * h_step, (devparms->fftbuf_out[i] * fft_v_sense) + fft_v_offset, (i + 1) * h_step, (devparms->fftbuf_out[i + 1] * fft_v_sense) + fft_v_offset);
}
}
}
}
sprintf(str, "FFT: CH%i ", devparms->math_fft_src + 1);
if(devparms->timebasedelayenable)
{
convert_to_metric_suffix(str + strlen(str),
(devparms->fftbufsz * 2) / (devparms->timebasedelayscale * devparms->hordivisions),
0);
}
else
{
convert_to_metric_suffix(str + strlen(str),
(devparms->fftbufsz * 2) / (devparms->timebasescale * devparms->hordivisions),
0);
}
strcat(str, "Sa/s");
painter->drawText(15, 30, str);
painter->setClipping(false);
}
else
{
painter->setPen(QPen(QBrush(QColor(128, 0, 255), Qt::SolidPattern), tracewidth, Qt::SolidLine, Qt::SquareCap, Qt::BevelJoin));
sprintf(str, "FFT: CH%i Data Invalid!", devparms->math_fft_src + 1);
painter->drawText(15, 30, str);
}
// clk_end = clock();
//
// cpu_time_used += ((double) (clk_end - clk_start)) / CLOCKS_PER_SEC;
@ -550,13 +818,13 @@ void SignalCurve::drawWidget(QPainter *painter, int curve_w, int curve_h)
}
void SignalCurve::drawCurve(struct device_settings *devp, struct tmcdev *dev, int bsize)
void SignalCurve::drawCurve(struct device_settings *devp, struct tmcdev *dev)
{
devparms = devp;
device = dev;
bufsize = bsize;
bufsize = devparms->wavebufsz;
update();
}
@ -667,6 +935,8 @@ void SignalCurve::drawTopLabels(QPainter *painter)
convert_to_metric_suffix(str, devparms->timebasescale, 1);
}
remove_trailing_zeros(str);
strcat(str, "s");
painter->drawText(140, 5, 70, 20, Qt::AlignCenter, str);
@ -1269,6 +1539,11 @@ void SignalCurve::mousePressEvent(QMouseEvent *press_event)
m_x,
m_y;
if(devparms->math_fft && devparms->math_fft_split)
{
return;
}
setFocus(Qt::MouseFocusReason);
w = width() - (2 * bordersize);

Wyświetl plik

@ -83,7 +83,7 @@ public:
void setRasterColor(QColor);
void setTextColor(QColor);
void setBorderSize(int);
void drawCurve(struct device_settings *, struct tmcdev *, int);
void drawCurve(struct device_settings *, struct tmcdev *);
void clear();
void setUpdatesEnabled(bool);
void setTrigLineVisible(void);
@ -112,7 +112,9 @@ private:
QFont smallfont;
double v_sense;
double v_sense,
fft_v_sense,
fft_v_offset;
int bufsize,
bordersize,

Wyświetl plik

@ -0,0 +1,164 @@
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* kiss_fft.h
defines kiss_fft_scalar as either short or a float type
and defines
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
#include "kiss_fft.h"
#include <limits.h>
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#ifdef FIXED_POINT
#if (FIXED_POINT==32)
# define FRACBITS 31
# define SAMPPROD int64_t
#define SAMP_MAX 2147483647
#else
# define FRACBITS 15
# define SAMPPROD int32_t
#define SAMP_MAX 32767
#endif
#define SAMP_MIN -SAMP_MAX
#if defined(CHECK_OVERFLOW)
# define CHECK_OVERFLOW_OP(a,op,b) \
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
fprintf(stderr,"WARNING:overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld\n",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); }
#endif
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
# define S_MUL(a,b) sround( smul(a,b) )
# define C_MUL(m,a,b) \
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
# define DIVSCALAR(x,k) \
(x) = sround( smul( x, SAMP_MAX/k ) )
# define C_FIXDIV(c,div) \
do { DIVSCALAR( (c).r , div); \
DIVSCALAR( (c).i , div); }while (0)
# define C_MULBYSCALAR( c, s ) \
do{ (c).r = sround( smul( (c).r , s ) ) ;\
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
#else /* not FIXED_POINT*/
# define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
# define C_FIXDIV(c,div) /* NOOP */
# define C_MULBYSCALAR( c, s ) \
do{ (c).r *= (s);\
(c).i *= (s); }while(0)
#endif
#ifndef CHECK_OVERFLOW_OP
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
#endif
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
(res).r += (a).r; (res).i += (a).i;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
(res).r -= (a).r; (res).i -= (a).i; \
}while(0)
#ifdef FIXED_POINT
# define KISS_FFT_COS(phase) floor(.5+SAMP_MAX * cos (phase))
# define KISS_FFT_SIN(phase) floor(.5+SAMP_MAX * sin (phase))
# define HALF_OF(x) ((x)>>1)
#elif defined(USE_SIMD)
# define KISS_FFT_COS(phase) _mm_set1_ps( cos(phase) )
# define KISS_FFT_SIN(phase) _mm_set1_ps( sin(phase) )
# define HALF_OF(x) ((x)*_mm_set1_ps(.5))
#else
# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
# define HALF_OF(x) ((x)*.5)
#endif
#define kf_cexp(x,phase) \
do{ \
(x)->r = KISS_FFT_COS(phase);\
(x)->i = KISS_FFT_SIN(phase);\
}while(0)
/* a debugging function */
#define pcpx(c)\
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )
#ifdef KISS_FFT_USE_ALLOCA
// define this to allow use of alloca instead of malloc for temporary buffers
// Temporary buffers are used in two case:
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
#include <alloca.h>
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
#define KISS_FFT_TMP_FREE(ptr)
#else
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
#endif

408
third_party/kiss_fft/kiss_fft.c vendored 100644
Wyświetl plik

@ -0,0 +1,408 @@
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "_kiss_fft_guts.h"
/* The guts header contains all the multiplication and addition macros that are defined for
fixed or floating point complex numbers. It also delares the kf_ internal functions.
*/
static void kf_bfly2(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx * Fout2;
kiss_fft_cpx * tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do{
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
C_MUL (t, *Fout2 , *tw1);
tw1 += fstride;
C_SUB( *Fout2 , *Fout , t );
C_ADDTO( *Fout , t );
++Fout2;
++Fout;
}while (--m);
}
static void kf_bfly4(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
const size_t m
)
{
kiss_fft_cpx *tw1,*tw2,*tw3;
kiss_fft_cpx scratch[6];
size_t k=m;
const size_t m2=2*m;
const size_t m3=3*m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
C_MUL(scratch[0],Fout[m] , *tw1 );
C_MUL(scratch[1],Fout[m2] , *tw2 );
C_MUL(scratch[2],Fout[m3] , *tw3 );
C_SUB( scratch[5] , *Fout, scratch[1] );
C_ADDTO(*Fout, scratch[1]);
C_ADD( scratch[3] , scratch[0] , scratch[2] );
C_SUB( scratch[4] , scratch[0] , scratch[2] );
C_SUB( Fout[m2], *Fout, scratch[3] );
tw1 += fstride;
tw2 += fstride*2;
tw3 += fstride*3;
C_ADDTO( *Fout , scratch[3] );
if(st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
}else{
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
}while(--k);
}
static void kf_bfly3(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
size_t m
)
{
size_t k=m;
const size_t m2 = 2*m;
kiss_fft_cpx *tw1,*tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride*m];
tw1=tw2=st->twiddles;
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR( scratch[0] , epi3.i );
C_ADDTO(*Fout,scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
}while(--k);
}
static void kf_bfly5(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=st->twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m,
int p
)
{
int u,k,q1,q;
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx t;
int Norig = st->nfft;
kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratch[q1] = Fout[ k ];
C_FIXDIV(scratch[q1],p);
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratch[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
C_MUL(t,scratch[q] , twiddles[twidx] );
C_ADDTO( Fout[ k ] ,t);
}
k += m;
}
}
KISS_FFT_TMP_FREE(scratch);
}
static
void kf_work(
kiss_fft_cpx * Fout,
const kiss_fft_cpx * f,
const size_t fstride,
int in_stride,
int * factors,
const kiss_fft_cfg st
)
{
kiss_fft_cpx * Fout_beg=Fout;
const int p=*factors++; /* the radix */
const int m=*factors++; /* stage's fft length/p */
const kiss_fft_cpx * Fout_end = Fout + p*m;
#ifdef _OPENMP
// use openmp extensions at the
// top-level (not recursive)
if (fstride==1 && p<=5)
{
int k;
// execute the p different work units in different threads
# pragma omp parallel for
for (k=0;k<p;++k)
kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
// all threads have joined by this point
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
}
return;
}
#endif
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work( Fout , f, fstride*p, in_stride, factors,st);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static
void kf_factor(int n,int * facbuf)
{
int p=4;
double floor_sqrt;
floor_sqrt = floor( sqrt((double)n) );
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
{
kiss_fft_cfg st=NULL;
size_t memneeded = sizeof(struct kiss_fft_state)
+ sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/
if ( lenmem==NULL ) {
st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
}else{
if (mem != NULL && *lenmem >= memneeded)
st = (kiss_fft_cfg)mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft=nfft;
st->inverse = inverse_fft;
for (i=0;i<nfft;++i) {
const double pi=3.141592653589793238462643383279502884197169399375105820974944;
double phase = -2*pi*i / nfft;
if (st->inverse)
phase *= -1;
kf_cexp(st->twiddles+i, phase );
}
kf_factor(nfft,st->factors);
}
return st;
}
void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
{
if (fin == fout) {
//NOTE: this is not really an in-place FFT algorithm.
//It just performs an out-of-place FFT into a temp buffer
kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
KISS_FFT_TMP_FREE(tmpbuf);
}else{
kf_work( fout, fin, 1,in_stride, st->factors,st );
}
}
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
{
kiss_fft_stride(cfg,fin,fout,1);
}
void kiss_fft_cleanup(void)
{
// nothing needed any more
}
int kiss_fft_next_fast_size(int n)
{
while(1) {
int m=n;
while ( (m%2) == 0 ) m/=2;
while ( (m%3) == 0 ) m/=3;
while ( (m%5) == 0 ) m/=5;
if (m<=1)
break; /* n is completely factorable by twos, threes, and fives */
n++;
}
return n;
}

124
third_party/kiss_fft/kiss_fft.h vendored 100644
Wyświetl plik

@ -0,0 +1,124 @@
#ifndef KISS_FFT_H
#define KISS_FFT_H
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
ATTENTION!
If you would like a :
-- a utility that will handle the caching of fft objects
-- real-only (no imaginary time component ) FFT
-- a multi-dimensional FFT
-- a command-line utility to perform ffts
-- a command-line utility to perform fast-convolution filtering
Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c
in the tools/ directory.
*/
#ifdef USE_SIMD
# include <xmmintrin.h>
# define kiss_fft_scalar __m128
#define KISS_FFT_MALLOC(nbytes) _mm_malloc(nbytes,16)
#define KISS_FFT_FREE _mm_free
#else
#define KISS_FFT_MALLOC malloc
#define KISS_FFT_FREE free
#endif
#ifdef FIXED_POINT
#include <sys/types.h>
# if (FIXED_POINT == 32)
# define kiss_fft_scalar int32_t
# else
# define kiss_fft_scalar int16_t
# endif
#else
# ifndef kiss_fft_scalar
/* default is float */
# define kiss_fft_scalar double
# endif
#endif
typedef struct {
kiss_fft_scalar r;
kiss_fft_scalar i;
}kiss_fft_cpx;
typedef struct kiss_fft_state* kiss_fft_cfg;
/*
* kiss_fft_alloc
*
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
*
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL);
*
* The return value from fft_alloc is a cfg buffer used internally
* by the fft routine or NULL.
*
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc.
* The returned value should be free()d when done to avoid memory leaks.
*
* The state can be placed in a user supplied buffer 'mem':
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
* then the function places the cfg in mem and the size used in *lenmem
* and returns mem.
*
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
* then the function returns NULL and places the minimum cfg
* buffer size in *lenmem.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem);
/*
* kiss_fft(cfg,in_out_buf)
*
* Perform an FFT on a complex input buffer.
* for a forward FFT,
* fin should be f[0] , f[1] , ... ,f[nfft-1]
* fout will be F[0] , F[1] , ... ,F[nfft-1]
* Note that each element is complex and can be accessed like
f[k].r and f[k].i
* */
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout);
/*
A more generic version of the above function. It reads its input from every Nth sample.
* */
void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride);
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
buffer and can be simply free()d when no longer needed*/
#define kiss_fft_free free
/*
Cleans up some memory that gets managed internally. Not necessary to call, but it might clean up
your compiler output to call this before you exit.
*/
void kiss_fft_cleanup(void);
/*
* Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5)
*/
int kiss_fft_next_fast_size(int n);
/* for real ffts, we need an even size */
#define kiss_fftr_next_fast_size_real(n) \
(kiss_fft_next_fast_size( ((n)+1)>>1)<<1)
#ifdef __cplusplus
}
#endif
#endif

159
third_party/kiss_fft/kiss_fftr.c vendored 100644
Wyświetl plik

@ -0,0 +1,159 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "kiss_fftr.h"
#include "_kiss_fft_guts.h"
struct kiss_fftr_state{
kiss_fft_cfg substate;
kiss_fft_cpx * tmpbuf;
kiss_fft_cpx * super_twiddles;
#ifdef USE_SIMD
void * pad;
#endif
};
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
{
int i;
kiss_fftr_cfg st = NULL;
size_t subsize, memneeded;
if (nfft & 1) {
fprintf(stderr,"Real FFT optimization must be even.\n");
return NULL;
}
nfft >>= 1;
kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
if (lenmem == NULL) {
st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg) mem;
*lenmem = memneeded;
}
if (!st)
return NULL;
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft/2; ++i) {
double phase =
-3.14159265358979323846264338327 * ((double) (i+1) / nfft + .5);
if (inverse_fft)
phase *= -1;
kf_cexp (st->super_twiddles+i,phase);
}
return st;
}
void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
{
/* input buffer timedata is stored row-wise */
int k,ncfft;
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
if ( st->substate->inverse) {
fprintf(stderr,"kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
C_FIXDIV(tdc,2);
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
#ifdef USE_SIMD
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
#else
freqdata[ncfft].i = freqdata[0].i = 0;
#endif
for ( k=1;k <= ncfft/2 ; ++k ) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft-k].r;
fpnk.i = - st->tmpbuf[ncfft-k].i;
C_FIXDIV(fpk,2);
C_FIXDIV(fpnk,2);
C_ADD( f1k, fpk , fpnk );
C_SUB( f2k, fpk , fpnk );
C_MUL( tw , f2k , st->super_twiddles[k-1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
}
}
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata)
{
/* input buffer timedata is stored row-wise */
int k, ncfft;
if (st->substate->inverse == 0) {
fprintf (stderr, "kiss fft usage error: improper alloc\n");
exit (1);
}
ncfft = st->substate->nfft;
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
C_FIXDIV(st->tmpbuf[0],2);
for (k = 1; k <= ncfft / 2; ++k) {
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
fk = freqdata[k];
fnkc.r = freqdata[ncfft - k].r;
fnkc.i = -freqdata[ncfft - k].i;
C_FIXDIV( fk , 2 );
C_FIXDIV( fnkc , 2 );
C_ADD (fek, fk, fnkc);
C_SUB (tmp, fk, fnkc);
C_MUL (fok, tmp, st->super_twiddles[k-1]);
C_ADD (st->tmpbuf[k], fek, fok);
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
#ifdef USE_SIMD
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
#else
st->tmpbuf[ncfft - k].i *= -1;
#endif
}
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
}

Wyświetl plik

@ -0,0 +1,46 @@
#ifndef KISS_FTR_H
#define KISS_FTR_H
#include "kiss_fft.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
Real optimized version can save about 45% cpu time vs. complex fft of a real seq.
*/
typedef struct kiss_fftr_state *kiss_fftr_cfg;
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem, size_t * lenmem);
/*
nfft must be even
If you don't care to allocate space, use mem = lenmem = NULL
*/
void kiss_fftr(kiss_fftr_cfg cfg,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata);
/*
input timedata has nfft scalar points
output freqdata has nfft/2+1 complex points
*/
void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata);
/*
input freqdata has nfft/2+1 complex points
output timedata has nfft scalar points
*/
#define kiss_fftr_free free
#ifdef __cplusplus
}
#endif
#endif